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Résumé en Français

La grande majorité des services numériques proposés aujourd’hui sont fournis par des
systèmes centralisés, qui concentrent l’autorité et les capacités entre les mains de quelques
privilégiés. Si cette centralisation réduit la complexité de mise en œuvre et augmente
l’efficacité, elle s’accompagne d’une résistance à la censure et d’un manque de transparence.
Au cours des dernières années, les systèmes décentralisés, tels que les blockchains et les
registres distribués, ont suscité un intérêt croissant. En simples termes, un registre distribué
peut être considéré comme une méthode qui préserve les données dans une base de données
distribuée tout en garantissant que toutes les parties honnêtes ont la même vue des données,
même en présence de parties corrompues. La définition la plus élémentaire d’une blockchain
est un registre numérique distribué qui enregistre de manière vérifiable les transactions
entre plusieurs parties. En permettant aux utilisateurs de conserver une copie du registre
et en synchronisant toutes les copies à l’aide d’un mécanisme de consensus, elle élimine le
besoin de vérification par une autorité centrale.

Toutefois, ces avantages se font souvent au détriment de deux propriétés essentielles :
la confidentialité et la mise à l’échelle. Pour garantir l’exactitude des calculs, les systèmes
de registres décentralisés existants exigent que les parties publient l’intégralité de leur état
de calcul, qui est ensuite vérifié par les autres parties qui doivent ré-exécuter le calcul. Du
point de vue de la confidentialité, cela révèle le calcul, les données d’entrée et l’identité des
parties. Du point de vue de la mise à l’échelle, cela signifie que le coût des calculs coûteux
est supporté par chaque partie du système, et non par la seule partie qui invoque le calcul.
Il convient de noter que, outre les blockchains, ces préoccupations sont pertinentes pour
tout système qui doit fournir une preuve de calcul correct tout en préservant la vie privée,
par exemple une entreprise fournissant des données à un cabinet d’audit.

Pour résoudre ce dilemme, les systèmes de preuve à divulgation nulle de connaissance
se sont révélés être une solution clé. Un système de preuve est un protocole interactif dans
lequel une partie (appelée le prouveur) essaie de convaincre une autre partie (appelée le
vérifieur) qu’un énoncé donné est vrai. Dans une preuve à divulgation nulle de connaissance,
nous exigeons en outre que la preuve ne révèle rien d’autre que la vérité de l’énoncé. Une
preuve est non-interactive si aucune communication n’est requise entre le prouveur et le
vérifieur, sauf pour l’envoi de la preuve. Dans la classe des preuves non interactives, un
concept particulièrement intéressant pour prouver l’intégrité de calcul est le “Succinct Non-
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interactive ARgument of Knowledge” (SNARK). Il fournit une preuve calculatoirement
consistante, peu coûteuse à vérifier et petite de taille par rapport à la taille de l’énoncé ou
du témoin. Au lieu de publier un calcul coûteux sur la blockchain, une partie publie une
preuve SNARK à divulgation nulle de connaissance de l’exécution correcte de ce calcul.
Cela résout à la fois le problème de la confidentialité et celui de la mise à l’échelle.

Les SNARKs basés sur le couplage bilinéaire sont les systèmes de preuve les plus
efficaces en ce qui concerne la propriété de succinctivité. En outre, cette propriété en fait
de bons candidats pour la composition de preuves récursives. Une preuve récursive est
une preuve faite par un prouveur qui convainc un vérifieur que d’autres preuves faites par
d’autres prouveurs ont été correctement vérifiées par le prouveur. Cela permettrait à une
seule preuve d’attester inductivement de l’exactitude de nombreuses preuves antérieures,
ce qui aiderait les blockchains encore plus pour la mise à l’échelle.

Dans cette thèse, nous étudions l’arithmétique des systèmes de preuves récursives basés
sur le couplage bilinéaire. Nous présentons une étude à trois étapes du processus : les
courbes pour instancier un SNARK, les courbes pour instancier un SNARK récursif, et
aussi les courbes pour exprimer un énoncé lié à une courbe elliptique. Nous fournissons de
nouvelles constructions de courbes pour les SNARKs et de nouvelles familles de courbes
à 2 chaînes pour les SNARKs récursifs. Nous dérivons et implémentons en open-source
des algorithmes efficaces pour accélérer l’arithmétique sur ces courbes : effacement de
cofacteur, test d’appartenance à un sous-groupe, multiplication multi-scalaire et couplages
bilinéaires sur les 2-chaînes. Nous étudions et optimisons également l’arithmétique des
courbes elliptiques et les couplages bilinéaires en tant qu’énoncé SNARK, ce qui permet
la génération de preuves récursives la plus rapide.
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Motivation and outline

The vast majority of digital services offered today are delivered through centralized
systems, which concentrate authority and ability in the hands of a select few. While this
centralization reduces implementation complexity and increases effectiveness, it comes with
censorship resistance and lack of transparency. Over the past several years there have been
an increasing interest in decentralized systems, such as blockchains and distributed ledgers.
In the simplest terms, a distributed ledger can be thought of as a method that preserves
data across a distributed database while guaranteeing that all honest parties have the
same view of the data, even in the presence of corrupt parties. The most basic definition of
a blockchain is a digitally distributed ledger that verifiably records transactions between
many parties. By enabling users to keep a copy of the ledger and syncing all copies using
a consensus mechanism, it eliminates the need for verification by a central authority.

However, these benefits often come at the expense of two key properties: privacy and
scalability. To ensure the correctness of computations, existing decentralized ledger systems
require that parties publish their entire computational state, which is then checked by
the other parties who have to re-execute the computation. From the privacy perspective,
this reveals the computation, the input data and the identities of the parties. From the
scalability perspective, this means that the cost of expensive computations is carried by
every party in the system, as opposed to just the party invoking the computation. Note
that, besides blockchains, these concerns are relevant to any system which has to provide
a proof of correct computation while preserving privacy, for instance a company providing
data to an audit firm.

To address this dilemma zero-knowledge proof systems have shown to be a key solution.
A proof system is an interactive protocol where one party (called the prover) tries to con-
vince another party (called the verifier) that a given statement is true. In a zero-knowledge
proof, we further require that the proof does not reveal anything beyond the truth of the
statement. A proof is non-interactive if no communication is required between the prover
and the verifier except from sending the proof. In the class of non-interactive proofs, a
particularly interesting concept for proving the computational integrity is the Succinct
Non-interactive ARgument of Knowledge (SNARK). It provides a computationally sound
proof, cheap to verify and small compared to the size of the statement or the witness.
Instead of publishing an expensive computation on the blockchain, a party publishes a
zero-knowledge SNARK proof of the correct execution of that computation. This solves
both the privacy issue and the scalability issue.

Pairing-based SNARKs are the most efficient proof systems with respect to the suc-
cinctness property. Furthermore, this property makes them good candidates for recursive
proof composition. A recursive proof is a proof made by a prover that convinces a verifier
that other proofs made by other provers have been correctly verified by the prover. This
would allow a single proof to inductively attest to the correctness of many former proofs,
yielding even more scalable blockchains.
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In this dissertation, we investigate the arithmetic of recursive pairing-based proof
systems. We present a study at three stages of the process: curves to instantiate a SNARK,
curves to instantiate a recursive SNARK, and also curves to express an elliptic-curve related
statement. We provide new constructions of curves for SNARKs and new families of 2-chain
curves for recursive SNARKs. We derive and implement in open-source efficient algorithms
to speed up the arithmetic on these curves: co-factor clearing, subgroup membership testing,
multi-scalar multiplication and pairings over 2-chains. We also study and optimize elliptic-
curve arithmetic and pairings as a SNARK statement, yielding to the fastest recursive
proof generation in pairing-based settings.

Pairing-friendly curves for SNARKs

Pairing-based SNARKs cannot be instantiated with generic-purpose elliptic curves, but
instead require tailored constructions of elliptic curves. More precisely, they need pairing-
friendly elliptic curves with additional properties, purposely designed to provide an efficient
implementation. The proof generation involves solving multiple large instances of tasks
about polynomial arithmetic in Fr[X] (where r is the curve prime subgroup order) and
multi-scalar multiplication (MSM) over the pairing groups. The proof verification mainly
involves computing a product of pairings.

In Part I (Chapters 1 and 2), we give preliminaries on pairings, pairing-friendly con-
structions and pairing-based proof systems. In Part II (Chapter 3), we first give an overview
of the elliptic curves designed for different proof systems, revisit some constructions in
terms of efficiency and security and propose some new ones. Next, we focus on efficient
arithmetic over these curves. We derive new results on co-factor clearing and subgroup
membership in the pairing groups.

Pairing-friendly curves for recursive SNARKs

Because SNARKs are succinct they allow efficient proof composition. The goal of such
proofs is to verify the validity of other proofs. This would allow a single proof to inductively
attest to the correctness of many former proofs. However, once a first proof is generated, it
is highly impractical to use the same elliptic curve to generate a second proof verifying the
first one. A practical approach requires two different curves that are closely tied together.

In Part II (Chapter 4) we focus on the construction of families of cycles and chains of
SNARK-friendly elliptic curves for recursive proof systems. First, we present results from
the literature on cycles of pairing-friendly, plain and hybrid curves before presenting our
results on families of 2-chains and their arithmetic. We focus on efficient arithmetic on
the 2-chains and derive novel pairing algorithms. Next, in Part II (Chapter 5), we revisit
the MSM algorithm and propose optimizations in the case of 2-chains.

Pairing-friendly curves inside SNARKs

While SNARKs allow proving general-purpose computations, in many applications these
computations revolve around proving some cryptographic operations such as hashings, en-
cryptions, key exchanges or signatures. These operations often require efficiently expressing
elliptic-curve arithmetic as a SNARK computation which actually is a verification. This
changes the perspective on the optimization of operations on curves. The elliptic curve
used for this can be independent of the SNARK elliptic curve to prove the computation.
We call it an associated curve.



In Part III (Chapter 6), we investigate the question of what associated elliptic curve is
suitable for this problem in the light of the Rank-1 Constrain System (R1CS), a widely used
model to express SNARK computations. We optimize the scalar multiplication algorithm
in R1CS and construct suitable curves associated to the SNARK-friendly curves introduced
in the previous chapters. Next, in Part III (Chapter 7), we consider efficiently implementing
pairings in R1CS. This is a key step to speed up recursive proofs generation. We show
that our techniques almost halve the arithmetic circuit depth of the previously best known
pairing implementation on a BLS12 curve, resulting in 70% faster proving time. We also
investigate the case of BLS24 curves.

Part I:
Preliminaries

Part III:

Elliptic curves and

pairings in SNARKs

Chapter 7:

Pairings in R1CS

Chapter 6:

Elliptic-curve

arithmetic in R1CS

Chapter 2:

Pairing-based proof

systems

Chapter 1:

Pairing-friendly elliptic

curves

Part II:

SNARK-friendly
elliptic curves

Chapter 5: Multi-
scalar-multiplication

algorithm on SNARK-
friendly curves

Chapter 4:

Elliptic curves for

recursive SNARKs

Chapter 3:

Elliptic curves for

SNARKs



6

Industrial Impact

The work in this dissertation has resulted in an industrial impact. Below we first
describe the gnark open-source ecosystem that implements the totality of this work, and
then we elaborate on the adoption by other ecosystems of this work.

gnark ecosystem

The gnark ecosystem is composed of two libraries: gnark-crypto and gnark.

gnark-crypto. This is an open-source software library in Go that provides elliptic-curve
and pairing-based cryptography on a wide variety of curves (BN, BLS, BW, Edwards).
It also provides optimized finite field arithmetic and various algorithms of particular
interest to zero- knowledge proof systems (FFT, MSM, KZG, MiMC, FRI). The curves
and algorithms described in this dissertation (Chapters 3, 4 and 5) are all implemented in
this library. The gnark-crypto code is maintained by ConsenSys under the Apache 2.0
license.

Source code https://github.com/ConsenSys/gnark-crypto

gnark. This is an open-source software library in Go that offers a high-level API to
design SNARK circuits. It implements Groth16 and PLONK proof systems using any
elliptic curve implemented in gnark-crypto. The PLONK implementation comes in two
flavours: a universal one using KZG polynomial commitment and a transparent one using
FRI polynomial commitment. The repository also comes with a standard library that
implements SNARK-friendly circuits such as pairing-based proof composition, algebraic
hashes (MiMC) and EdDSA signatures (on associated curves). The curves and algorithms
described in this dissertation (Chapters 3, 4, 6 and 7) are all implemented in this library.
The gnark code is maintained by ConsenSys under the Apache 2.0 license.

Source code https://github.com/ConsenSys/gnark

https://github.com/ConsenSys/gnark-crypto
https://github.com/ConsenSys/gnark


Documentation https://docs.gnark.consensys.net

Playground https://play.gnark.io

At the time of writing, the gnark ecosystem is used by several projects such as: Con-
senSys zk-rollup, Algorand, Binance, Coinbase, IBM, Baseline, Geth, iden3 and Provide.

Other ecosystems

We also implemented some of the curves, algorithms and optimizations in this dissertation
in other ecosystems: libsnark and arkworks.

libsnark. This is an open-source software SNARK ecosystem in C++ developed by
SCIPR Lab. It uses underneath libff which is a C++ library for finite fields and elliptic
curves. During the first year of this thesis, we contributed to the implementation of several
elliptic curves and pairing algorithms (Chapters 3 and 4) in this fork1 of libff. It was
used by Ernst&Young in the Nightfall2 product.

arkworks. This is an open-source software SNARK ecosystem in Rust (http://arkworks.
rs). We contributed to the implementation of 2-chains and several optimizations (Chap-
ters 3 and 4). In particular, our implementation of the BW6-761 curve in arkworks is now
used by three blockchain projects: Celo (https://celo.org), Aleo (https://aleo.org)
and Espresso Systems (https://espressosys.com).

1https://github.com/EYBlockchain/zk-swap-libff
2https://github.com/EYBlockchain/nightfall

https://docs.gnark.consensys.net
https://play.gnark.io
http://arkworks.rs
http://arkworks.rs
https://celo.org
https://aleo.org
https://espressosys.com
https://github.com/EYBlockchain/zk-swap-libff
https://github.com/EYBlockchain/nightfall
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1
Pairing-friendly elliptic curves

1.1 Background on elliptic curves

Let Fp be a field for some prime p > 3. In this thesis we shall always define curves over a
field of prime order and of characteristic strictly greater than three. An elliptic curve E
over such a field Fp can always be reduced to the short Weierstrass equation of the form

E : y2 = x3 + ax+ b

where a, b ∈ Fp. Let ∆ = 4a3 + 27b2, the discriminant of the cubic equation in x. Then E
is singular if ∆ = 0 (repeated roots) and nonsingular otherwise (distinct roots). Elliptic
curves are nonsingular (smooth) curves.

For any field Fp define E(Fp) to be the set of all solutions of E over Fp called the finite
points along with a special point denoted O, that is called the point at infinity. We write
#E(Fp) for the number of elements of E(Fp). Solving the curve equation using projective
coordinates, one can show that O = (0 : 1 : 0) is always a unique infinite solution to the
equation. This set of points forms a group under the composition law noted additively
(+).

The group composition law: Chord-and-tangent

Let P1 = (x1, y1) and P2 = (x2, y2) be any two points on E(Fp). The group law is given
as follows:

(a) P1 +O = P1 and O + P2 = P2

(b) −P1 = (x1,−y1) and −P2 = (x2,−y2)

Part I - Preliminaries 11
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Figure 1.1: Examples of (smooth) elliptic curves over R and F17 and singular curves over
R
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(b) E/R : y2 = x3 − 6x+ 4
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(d) E/R : y2 = x2(x+ 1)
(singular: node)
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(e) E/R : y2 = x3(singular: cusp)

(c) Define λ as

λ =

{
(y2 − y1)/(x2 − x1) if P1 6= P2

(3x2
1 + a)/(2y1) if P1 = P2

The point P3 = P1 + P2 is given by P3 = (x3, y3) with

x3 = λ2 − x1 − x2; y3 = λ(x1 − x3)− y1 .

A geometric interpretation. To add P1 and P2, one takes the line ` passing through
them. If the points are equal, one takes the tangent to E in P1 (= P2). From Bézout’s
theorem, we know that ` intersects with E in a third point. The reflection of this third inter-
section point about the x-axis is the sum P3. Figure 1.2 shows this geometric interpretation
of the group law over R.

Scalar multiplication. The multiplication-by-m map, or scalar multiplication is

[m] : E → E
P 7→ P + . . .+ P︸ ︷︷ ︸

m copies of P

for any m ∈ Z, with [−m]P = [m](−P ) and [0]P = O.
Given m > 0, computing [m]P as P + P + . . . P with m− 1 additions is exponential

in the size of m: m = elnm. We can compute [m]P in O(logm) operations on E with
the naive double-and-add method (Alg. 1.1). Better algorithms can be derived with dif-
ferent scalar encodings (NAF [MO90], DBNS [DIM05]), windowing methods and efficient
endomorphisms if available (GLV [GLV01]).
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Figure 1.2: Chord-and-tangent rule over R

`P1,P2(x, y)

P1

P2

−P3

P3 = P1 + P2

(a) “Chord”: P1 + P2

`P1,P1(x, y)
P1

−P3

[2]P1 = P3

(b) “Tangent”: 2P

Algorithm 1.1: Double-and-add algorithm for scalar multiplication
Input: E defined over Fp, m > 0, P ∈ E(Fp)
Output: [m]P ∈ E

1 if m = 0 then return O

2 Write m in binary expansion m =
n−1∑
i=0

bi2
i where bi ∈ {0, 1}

3 R← P

4 for i = n− 2 downto 0 do loop invariant: R = [bm/2ic]P
5 R← [2]R
6 if bi = 1 then
7 R← R + P

8 return R

1.2 Background on pairings

We recall elementary definitions of pairings and present the computation of two pairings
used in practice, the Tate and ate pairings. All elliptic curves discussed below are ordinary
(i.e. non-supersingular).

Let E be an ordinary elliptic curve defined over Fp. Let πp be the Frobenius endomor-
phism: (x, y) 7→ (xp, yp). Its minimal polynomial is X2 − tX + p where t 6= 0 is called
the trace. Let r be a prime divisor of the curve order #E(Fp) = p+ 1− t. The r-torsion
subgroup of E is denoted E[r] := {P ∈ E(Fp), [r]P = O} and has two subgroups of order r
(eigenspaces of πp in E[r]) that are useful for pairing applications. We define the two groups
G1 = E[r] ∩ ker(πp − [1]) with a generator denoted by G1, and G2 = E[r] ∩ ker(πp − [p])
with a generator G2. The group G2 is defined over Fpk , where the embedding degree k is
the smallest integer k ∈ N∗ such that r | pk − 1.

We recall the Tate and ate pairing definitions, based on the same two steps: evaluating
a function fs,Q at a point P , the Miller loop step, and then raising it to the power (pk−1)/r,
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the final exponentiation step. The function fs,Q has divisor div(fs,Q) = s(Q) − ([s]Q) −
(s− 1)(O) and satisfies, for integers i and j,

fi+j,Q = fi,Qfj,Q
`[i]Q,[j]Q

v[i+j]Q

,

where `[i]Q,[j]Q and v[i+j]Q are the two lines needed to compute [i+ j]Q from [i]Q and [j]Q
(` intersecting the two points and v the vertical). We compute fs,Q(P ) with the Miller
loop presented in Algorithm 1.2.

Algorithm 1.2: MillerLoop(s, P,Q)

Output: m = fs,Q(P ) for s =
t∑
i=0

si2
i

1 m← 1; S ← Q;
2 for b from t− 1 to 0 do
3 `← `S,S(P ); S ← [2]S; // DoubleLine
4 v ← v[2]S(P ); // VerticalLine
5 m← m2 · `/v; // Update1
6 if sb = 1 then
7 `← `S,Q(P ); S ← S +Q; // AddLine
8 v ← vS+Q(P ); // VerticalLine
9 m← m · `/v; // Update2

10 return m;

The Tate and ate pairings are defined by

Tate(P,Q) := fr,P (Q)(pk−1)/r

ate(P,Q) := ft−1,Q(P )(pk−1)/r

where P ∈ G1 and Q ∈ G2. The final exponentiation eliminates any factor which lives in a
strict subfield of Fpk [BKLS02]. In case the embedding degree k is even, the vertical lines
vS+Q(P ) and v[2]S(P ) live in a strict subfield of Fpk so these factors will be neutralized by
the final exponentiation. Hence, in this situation we ignore the VerticalLine steps
and remove the divisions by v in Update1 and Update2 steps.

In the sequel, when abstraction is needed, we refer to a pairing as the bilinear map
(cf. 1.3):

e : G1 ×G2 → GT

Complex multiplication and endomorphisms. It is also important to recall some
results with respect to the complex multiplication (CM) discriminant −D. When D = 3
(resp. D = 4), the curve has CM by Q(

√
−3) (resp. Q(

√
−1)) so that twists of degrees 3

and 6 exist (resp. 4). When E has d-th order twists for some d | k, then G2 is isomorphic to
E ′[r](Fpk/d) for some twist E ′. Otherwise, in the general case, E admits a single twist (up
to isomorphism) and it is of degree 2. We denote c1 and c2 the G1 and resp. G2 cofactors,
i.e #E(Fp) = c1r and #E ′(Fpk/d) = c2r .
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Figure 1.3: A bilinear pairing G1 ×G2 → GT
*.

* Figure courtesy of Diego F. Aranha.

When D = 3, the curve has a j-invariant 0 and is of the form y2 = x3 + b (a = 0). In
this case, an efficient endomorphism φ exists on G1. Given β a cube root of unity in Fp,

φ : E(Fp)[r]→ E(Fp)[r]
(x, y) 7→ (βx, y) (andO 7→ O) .

The endomorphism φ has a minimal polynomial X2 +X+1 and an eigenvalue λ satisfying
λ2 + λ + 1 ≡ 0 mod r. When D = 1, the curve has j-invariant 1728 and is of the form
y2 = x3 + ax (b = 0). In this case an efficient endomorphism σ exists on G1. Given i ∈ Fp
such that i2 = −1,

σ : E(Fp)[r]→ E(Fp)[r]
(x, y) 7→ (−x, iy) (andO 7→ O) .

OnG2, an efficient endomorphism is ψ the “untwist-Frobenius-twist” introduced in [GS08a].
ψ has a minimal polynomial X2 − tX + p and is defined by

ψ : E ′[r](Fpk/d)→ E ′[r](Fpk/d)
(x, y) 7→ ξ−1 ◦ πp ◦ ξ(x, y) (andO 7→ O) .

where ξ is the twisting isomorphism from E ′ to E. When D = 3, there are actually two
sextic twists, one with p+ 1− (−3y + t)/2 points on it, the other with p+ 1− (3y + t)/2,
where y =

√
(4p− t2)/3. Only one of these is the “right” twist, i.e. has an order divisible

by r. Let ν be a quadratic and cubic non-residue in Fpk/d and X6 − ν an irreducible
polynomial, the “right” twist is either y2 = x3 +b/ν (D-type twist) or y2 = x3 +bν (M-type
twist). For the D-type, the twisting isomorphism from E ′ to E is ξ : (x, y) 7→ (ν1/3x, ν1/2y)
and ψ becomes

ψ : (x, y) 7→ (ν(p−1)/3xp, ν(p−1)/2yp) (andO 7→ O) .

For the M-type, ξ : (x, y) 7→ (ν2/3x/ν, ν1/2y/ν) and ψ becomes

ψ : (x, y) 7→ (ν(−p+1)/3xp, ν(−p+1)/2yp) (andO 7→ O) .

For other d-twisting ξ formulae, see [Sco09].
Most of pairing-friendly curves fall into polynomial families, i.e. the curve parameters

are expressed as polynomials p(x), r(x) and t(x). These polynomials are then evaluated
at a “seed” u to derive a given curve (cf. Sec. 1.3).



16 Part I - Preliminaries

1.3 Some pairing-friendly constructions

We recall some methods and families from the literature related to pairing-friendly construc-
tions that will be of interest in the following sections. A detailed study of these constructions
is available in the taxonomy paper by Freeman, Scott and Teske [FST10]. We focus on the
Cocks–Pinch [FST10, Sec. 4.1] (CP) and Brezing–Weng [FST10, Sec. 6.1] (BW) methods,
and Barreto–Lynn–Scott [FST10, Sec. 6.6] of embedding degrees 12 and 24 (BLS12 and
BLS24), Barreto–Naehrig [BN06] (BN), Miyaji–Nakabayashi–Takano [FST10, Sec. 5.1]
of embedding degrees 4 and 6 (MNT4 and MNT6), Galbraith–McKee-Valença [GMV04]
[FST10, Sec. 5.2] of embedding degree 6 (GMV6) and cofactor 4 families and Kachisa–
Schaefer–Scott [KSS08] of embedding degrees 16 and 18 (KSS16 and KSS18) families.

From a high level perspective, there are two ways to obtain pairing-friendly curves.
Generic algorithms take as inputs k and r, and output (if it exists) an elliptic curve defined
over a field Fp and of embedding degree k w.r.t. a subgroup of prime order r over Fp. If
r is an integer, this is the Cocks–Pinch method, if r is a polynomial, this is the Brezing–
Weng method. The alternative is to consider precomputed tables of polynomial families
(k, r(x), D, t(x), p(x)) as in [FST10]. To rank the families of the same k, the ρ-value is
defined as the ratio of the sizes of p and r, resp. the ratio of the degrees of the polynomials
p(x) and r(x):

ρ =
log p

log r
, resp. ρ =

deg p(x)

deg r(x)
(1.1)

and because r | p+ 1− t, then ρ ≥ 1.
Cocks–Pinch is the most flexible method and can be used to construct a curve E(Fp)

with arbitrary embedding degrees and a subgroup order r such that the ratio ρ =
log2 p/ log2 r is approximately 2. It works by fixing r and the CM discriminant D and
then computing the trace t and the prime p such that the CM equation 4p = t2 + Dy2

(for some y ∈ Z) is satisfied (cf. Alg. 1.3).

Algorithm 1.3: Cocks–Pinch method
Input: A positive integer k and a positive square-free integer D
Output: E/Fp with an order-r subgroup and embedding degree k

1 Choose a prime r such that k divides r − 1 and −D is a square modulo r;
2 Compute t = 1 + z(r−1)/k for z a generator of (Z/rZ)×;
3 Compute y = (t− 2)/

√
−D mod r;

4 Lift t and y in Z;
5 Compute p = (t2 +Dy2)/4 in Q;
6 if p is a prime integer then
7 Use CM method (D < 1012) to construct E/Fp with order-r subgroup;
8 else
9 Go back to 1;

10 return E/Fp with an order-r subgroup and embedding degree k

Barreto, Lynn and Scott [BLS03] and later Brezing and Weng [BW05] generalized the
Cocks–Pinch method by parameterizing t, r and p as polynomials. This led to curves with
a ratio ρ < 2. Below, we sketch the idea of the algorithm in its generality for both BLS
and BW constructions (cf. Alg. 1.4). Particular choices of polynomials for k = 12 and
k = 24 yield two families of curves with good security/performance trade-offs, denoted
respectively BLS12 and BLS24. The parameters are given in Table 1.1.
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Algorithm 1.4: Idea of BLS and BW methods
Input: A positive integer k and a positive square-free integer D
Output: E/Fp(x) with an order-r(x) subgroup and embedding degree k

1 Choose an irreducible polynomial r(x) ∈ Z[x] with a positive leading coefficient such that√
−D and the primitive k-th root of unity ζk are in K = Q[x]/(r(x));

2 Choose t(x) ∈ Q[x] be a polynomial representing ζk + 1 in K;
3 Set y(x) ∈ Q[x] be a polynomial mapping to (ζk − 1)/

√
−D in K;

4 Compute p(x) = (t2(x) +Dy2(x))/4 in Q[x];
5 while p(x) is not irreducible do
6 Go back to 1;
7 return E/Fp(x) with an order-r(x) subgroup and embedding degree k

MNT curves, however, have a fixed embedding degree k ∈ {3, 4, 6} and a variable
discriminant D. They are also parameterized by polynomials and form a sparse family
(cf. Table 1.1) because one is required to solve a generalized Pell equation. Karabina and
Teske [KT08] showed that there is a prime-order elliptic curve E/Fp from the MNT6 family
if and only if there is a prime-order elliptic curve E ′/Fq from the MNT4 family such that
#E(Fp) = q and #E ′(Fq) = p.

GMV curves extend MNT curves with cofactors 2 ≤ c1 ≤ 5. This is achieved by
following the MNT strategy and substituting c1 · r for #E(Fp) followed by an explicit
analysis of the cases c1 = 2, 3, 4 and 5. Polynomial parameters for GMV with k = 6 and
c1 = 4 are given in Table 1.1 (the parameters in bold are used in Sec. 2.2.1). Later, Le
et. al [LMHT18] extended these constructions to any cofactor c1.

BN curves form a family of prime-order pairing-friendly elliptic curves with k = 12
and D = 3 (cf. Table 1.1). The construction is based on a result from [GMV07] and a
lucky try in which the right-hand side of the CM equation happens to be a constant times
a perfect square polynomial. However, it was suggested in [FST10, Example 6.8] that the
BN construction can be viewed as a complete family on its own.

Another strategy to build pairing-friendly constructions is to pick random small ele-
ments and take their minimal polynomials as the subgroup order polynomial r(x). For well
chosen embedding degrees k = 16 and k = 18, this yields the KSS16 and KSS18 families
with ρ = 5/4 and ρ = 4/3 respectively (cf. Table 1.1).
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Family k D ρ r(x) p(x) t(x)
BN 12 −3 1 36x4 + 36x3 + 18x2 + 6x+ 1 36x4 + 36x3 + 24x2 + 6x+ 1 6x2 + 1

BLS12 12 −3 3/2 x4 − x2 + 1 (x6 − 2x5 + 2x3 − x+ 1)/3 + x x+ 1

BLS24 24 −3 5/4 x8 − x4 + 1
(x10 − 2x9 + x8 − x6 + 2x5−

x4 + x2 + x+ 1)/3
x+ 1

MNT4 4 D 1
x2 + 1 or
x2 + 2x+ 2

x2 + x+ 1
−x or
x+ 1

MNT6 6 D 1 4x2 ± 2x+ 1 4x2 + 1 1± 2x

GMV6 6 D 1
4x2 + 2x+ 1
= Φ6(t− 1)

16x2 + 10x+ 5 2x+ 2

(c1 = 4)
28x2 + 10x+ 1
= Φ6(t− 1)/7

112x2 + 54x+ 7 14x+ 4

28x2 + 18x+ 3
= Φ6(t− 1)/7

112x2 + 86x+ 17 14x+ 6

52x2 + 14x+ 1
= Φ6(t− 1)/13

208x2 + 30x+ 1 −26x− 2

52x2 + 38x+ 7
= Φ6(t− 1)/13

208x2 + 126x+ 19 −26x− 8

KSS16 16 −1 5/4 (x9 + 48x4 + 625)/61550
(x10 + 2x9 + 5x8 + 48x6 + 152x5+

240x4 + 625x2 + 2398x+ 3125)/980
(2x5 + 41x+ 35)/35

KSS18 18 −3 4/3 (x6 + 37x3 + 343)/343
(x8 + 5x7 + 7x6 + 37x5 + 188x4+

259x3 + 343x2 + 1763x+ 2401)/21
(x4 + 16x+ 7)/7

Table 1.1: Polynomial parameters of BN, BLS12, MNT4, MNT6, GMV6, KSS16 and KSS18
families.
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2
Pairing-based proof systems

2.1 Proof systems

A proof system is an interactive protocol where one party (called the prover) tries to
convince another party (called the verifier) that a given statement is true. In a zero-
knowledge proof, we further require that the proof does not reveal anything beyond the
truth of the statement. A proof is non-interactive if no communication is required between
the prover and the verifier except from sending the proof.

Prover Verifier
I know the solution to
this complex equation

No idea what the solution is
but Alice must know it

“Prove it”

Challenge

Response

Example: sigma protocol

Prover Verifier

I know x such that [x]G = P

m
random←− Fr

A = [m]G
c = H(A,P )
s = m+ c · x

π = (A, c, s)
[s]G

?
= A+ [c]P

c
?
= H(A,P )
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In the class of non-interactive proofs, a particularly interesting concept for proving the
computational integrity is the Succinct Non-interactive ARgument of Knowledge (SNARK).
It provides a computationally sound proof that is cheap to verify and small compared to
the size of the statement or the witness. SNARK systems can be further equipped with a
zero-knowledge property that enables the proof to be verified without revealing anything
about the intermediate steps (the witness generation). We say that a zk-SNARK is:

• Sound, if No cheating prover can convince an honest verifier of a false statement;

• Complete, if An honest prover always convinces an honest verifier of a true statement;

• Succinct, if An honestly-generated proof is “short” and “easy” to verify;

• Non-interactive, if No interaction between the prover and verifier is required;

• ARgument of Knowledge, if An honest verifier is convinced that a computationally
bounded prover knows an information related to the statement;

• Zero-knowledge, if a verifier learns nothing other than the truth of the statement.

Proof systems were introduced in [GMR89] and extensively studied both in theoretical
and applied settings (e.g. [Kil92,Mic94,GW11,BCCT12]). Recent constructions focus on
a panoply of settings that range from cryptographic assumptions, asymptotic efficiency,
concrete performance of implementations to numerous applications. The mathematical
security of many schemes relies on variants of the discrete logarithm problem (DLP):
given a cyclic group G of prime order r written additively, a generator G, and an element
P ∈ G, compute x ∈ {0, 1, . . . , r − 1} such that [x]G = P . For example, the DLP-based
zero-knowledge proofs (e.g. [BCC+16], Bulletproofs [BBB+18], Hyrax [WTs+18]) require
a group G where the discrete logarithm problem is hard. They can be instantiated with
any cryptographically secure elliptic curve, where the problem is then referred to as the
Elliptic Curve Discrete Logarithm Problem (ECDLP). An efficient implementation uses
the Ristretto group [Ham15, Val21] over ed25519 [BDL+12] (e.g. Bulletproofs’ Dalek
library [dVYA22]).

Alternatively, a bilinear pairing is required in certain schemes. Pairing-based SNARKs
cannot be instantiated with general-purpose elliptic curves, but instead require tailored
constructions of elliptic curves. More precisely, they need pairing-friendly elliptic curves
with additional properties, designed to provide an efficient implementation. In the following
chapters, we give an overview of the elliptic curves designed for different proof systems,
revisit some constructions and propose some new ones.

zk-SNARK algorithms. In the following, we mainly focus on pairing-based zk-SNARKs
for Non-deterministic Polynomial (NP) languages for which we give a basic algorithmic
overview. Given a public NP program F , public inputs a and b and a private input w, such
that the program F satisfies the relation F (a, w) := b, a zk-SNARK consists in proving
this relation succinctly without revealing the private input w. Given a security parameter
λ, it consists of the Setup, Prove and Verify algorithms (cf. 2.1):

(σp, σv)← Setup(F, 1λ)

π ← Prove(a, b, w, σp)

0/1← Verify(a, b, π, σv)
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where σp is the proving key which encodes the program F for the prover, σv the verification
key which encodes F for the verifier and π the proof. If the Setup algorithm is trapdoor-ed
an additional secret input τ is required (σp, σv)← Setup(F, τ, 1λ).

Anyone (trusted)
(σp, σv)← Setup(F , τ , 1λ)

Alice (prover) Bob (verifier)

σp σv

π ← Prove(a, b, w, σp) Verify(a, b, π, σv)?
π

Figure 2.1: zk-SNARK algorithms. Public parameters are in blue and private ones in red.

Definition 2.1 ( [BCTV14b]). A succinct proof π has size Oλ(1) and can be verified in
time Oλ(|F |+ |a|+ |b|), where Oλ(.) is some polynomial in the security parameter λ.

2.2 Proof systems and pairings

Building on ideas from the pairing-based doubly-homomorphic encryption scheme [BGN05],
Groth, Ostrovsky and Sahai [GOS06, Gro06, GS08b] introduced the pairing-based non-
interactive zero-knowledge proofs, yielding the first linear-size proofs based on standard
assumptions. Groth [Gro10] combined these techniques with ideas from interactive zero-
knowledge proofs to give the first constant-size proofs which are based on constructing a
set of polynomial equations and using pairings to efficiently verify these equations. This
work relies on two new introduced pairing-based cryptographic assumptions, namely the
q-computational power Diffie-Hellman (q-CPDH) and the q-power knowledge of Exponent
(q-PKE).

The q-PKE assumption. The knowledge of exponent assumption (KEA) says that
given G, [α]G it is infeasible to create P , P̂ so that P̂ = [α]P without knowing a so
that P = [a]G and P̂ = [a]([α]G). Bellare and Palacio [BP04] extended this to the
KEA3 assumption which says that given G, [x]G, [α]G, [x][α]G it is infeasible to create
P , P̂ so that P̂ = [α]P without knowing a0, a1 so that P = [a0]G + [a1]([x]G) and
P̂ = [a0]([α]G)+[αx]([a1]G). The q-PKE assumption is a generalization of KEA and KEA3.
It says that given (G, [x]G, · · · , [xq]G, [α]G, [αx]G, · · · , [αxq]G) it is infeasible to create P ,

P̂ so P̂ = [α]P without knowing a0, · · · , aq so P =

q∑
i=0

[ai]([x
i]G) and P̂ =

q∑
i=0

[ai]([αx
i]G).

The q-CPDH assumption. The computational Diffie-Hellman (CDH) assumption
says that given G, [α]G, [x]G it is infeasible to compute [αx]G. The q-computational power
Diffie-Hellman assumption is a generalization of the CDH assumption that says given
(G, [x]G, · · · , [xq]G, [α]G, [αx]G, · · · , [αxq]G) except for one missing element [αxj]G, it is
hard to compute the missing element.

The q-CPDH assumption is a standard computational intractability assumption but
the q-PKE is a so-called knowledge of exponent assumption. Knowledge of exponent
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assumptions have been criticized for being unfalsifiable [Nao03] but the use of a non-
standard assumption may be unavoidable for statistical zero-knowledge arguments [AF07].

Overview of the [Gro16] construction. Given an instance Φ = (a0, . . . , a`) ∈ F`r of
a public NP program F , the SNARK algorithms (cf. Fig. 2.1) are:

• (σp, σv)← Setup(F , τ , 1λ) where

σv = (σvα,β , {σvπi}
`
i=0, σvγ , σvδ) ∈ GT ×G`+1

1 ×G2 ×G2

• π ← Prove(Φ, w, σp) where

π = (A,B,C) ∈ G1 ×G2 ×G1 (Oλ(1), Def. 2.1)

• 0/1← Verify(Φ, π, σv) where Verify is

e(A,B) = σvα,β · e(σvx , σvγ ) · e(C, σvδ) (Oλ(|Φ|), Def. 2.1) (2.1)

and σvx =
∑̀
i=0

[ai]σvπi depends only on the instance Φ and σvα,β = e(σvα , σvβ) can be

computed in the trusted setup for (σvα , σvβ) ∈ G1 ×G2.

The Setup and Prove algorithms mainly consist in multi-scalar multiplications (MSM)
in G1 and G2 groups and polynomial arithmetic in Fr, using Fast Fourier Transforms
(FFTs) (cf. Table 4.21).

2.2.1 Pairing-friendly curves for SNARKs

Following this direction of work, Gennaro et al. [GGPR13] proposed an insightful construc-
tion of polynomial equations that resulted in many interesting implementations [PHGR13,
BFR+13, BCG+13, BCTV14b,KPP+14] leading to the most succinct and widely imple-
mented pairing-based SNARK [Gro16]. The first implementation, Pinocchio [PHGR13]
used a pairing-friendly elliptic curve in the BN family [BN06] (BN) targeting a 128-bit
security level, but the source code was proprietary. They used the BN curve defined over a
256-bit field suggested in [NNS10] (seed x = 18680333). Next, as part of Pantry [BFR+13],
authors re-implemented Pinocchio under a BSD-style license using a 254-bit BN curve
from [BGM+10] (seed x = −(262 + 255 + 1), first introduced in [NAS+08]). This new
BN implementation partially builds on techniques from the previous BN paper [NNS10]
Pinocchio used.

Later in [BCG+13], the authors observed that constructing a pairing-friendly curve
with a subgroup order r where r − 1 is divisible by 2L a large power of 2, results in an
efficient proof generation via suitable Fast Fourier Transforms (FFTs) in Fr. To speed up
the arithmetic, they proposed to use the elliptic curve in Edwards form, by looking for a
group order multiple of 4. To match these two constraints: 2L divides r − 1 and the curve
has order 4 · r, they designed a Galbraith-McKee-Valença curve [GMV07] of embedding
degree 6 (GMV6) defined over Fp where p is a prime of 183 bits, and of order 4r where r
is of 181 bits such that 231 | r− 1. This curve was targeting a 80-bit security level in 2013
and was implemented in libff [BSCT+a].
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The same year, [BCTV14b] improved previous SNARK works and developed their
implementations with two different curves: the same GMV6 curve for the estimated 80-
bit security level (231 | r − 1) and a new BN curve for the estimated 128-bit security
level (228 | r − 1). Note that, as of today, this BN curve is the one precompiled in the
Ethereum blockchain. Last, Trinocchio [KPP+14] provided an implementation of a privacy-
preserving version of Pinocchio using the BN curve from [BCTV14b]. As the number of
applications increases, other implementations were released especially in the blockchain
space. In particular, Zcash cryptocurrency first implemented Zerocash protocol [BCG+14]
which uses the SNARK of [BCTV14b] and its BN curve, before switching to the SNARK
of [Gro16] and a new curve.

Security of pairing-based schemes. The previous paragraphs told an overview over
ten years of active and fruitful research on SNARK from the prelude [BGN05] in 2005 to
2016 with [Gro16]. Meanwhile, the research in discrete logarithm computation in finite fields
related to pairings also saw a tremendous decade, with a prequel in 2012 with a discrete
logarithm record-breaking computation in GF(36·97) in [FNK12]. This announcement had
a quite important impact over the community at that time [GM16, §9.3.8 p.30], probably
because the broken curve was introduced with the BLS short signatures [BLS01]. The tar-
geted finite field GF(36·97) was considered safe for 80-bit security implementations in 2012.
In 2014, two algorithms on fast computation of DL in small characteristic finite fields were
published [BGJT14,GKZ14] (quasi-polynomial-time algorithm, zig-zag descent). In 2019,
Granger et al. announced the largest record computation in a field GF(230750) [GKL+21],
and finally [KW22] published a proved complexity. Nowadays, small-characteristic finite
fields should be definitely avoided, as computing DL is not hard anymore especially if
the extension degree is composite, which renders supersingular elliptic curves in small
characteristic insecure.

Cryptanalysts also considered large and medium characteristic finite fields of the form
GF(pk) that arise with pairings. In 2016, Kim and Barbulescu [KB16] presented a variant
of the Number Field Sieve (NFS) algorithm which reduced the security level of the BN
curves previously at 128-bit security to around 110. Menezes, Sarkar and Singh [MSS16]
were the first to analyze thoroughly the consequences of the new NFS variants on the
security of pairing-friendly curves. Their conclusions recommend the Barreto–Lynn–Scott
curves of embedding degree 12 [BLS04] or BN curves over 384-bit prime fields instead of
BN curves over 256-bit fields. Based on this work, the Zcash team derived the BLS12-
381 curve defined over a 381-bit field with a 255-bit prime subgroup order r such that
232 | r − 1 [Bow17]. This curve is used today in several projects (e.g. Zcash, Ethereum
2.0, Skale, Algorand, Dfinity, Chia), implemented in different libraries and considered for
IETF standards.

2.2.2 Pairing-friendly curves for recursive SNARKs

Besides their efficiency, SNARKs’ succinctness makes them good candidates for recursive
proof composition. Such proofs could themselves verify the correctness of other proofs.
This would allow a single proof to inductively attest to the correctness of many former
proofs. However, once a first proof is generated, it is highly impractical to use the same
elliptic curve to generate a second proof verifying the first one. In pairing-based SNARKs
the proving algorithm runs in Fr while the verification algorithm runs in Fp. Ideally, we
would like to select a curve E with p = r, so that proving arithmetic is over the same field
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for which the statement (the verification of the previous proof) is defined. Unfortunately,
this cannot happen: the condition that E has embedding degree k with respect to r
implies that r | pk − 1, which implies that p 6= r. Furthermore, the curves satisfying
this condition have a trivial discrete logarithm problem. So, while appealing, this idea
cannot even be instantiated. Since we are stuck with p 6= r, we may consider doing “long
arithmetic”: simulating Fp operations via Fr operations, by working with bit chunks to
perform integer arithmetic, and modding out by p when needed. Alas, having to work at
the “bit level” implies a blowup on the order of log p compared to native arithmetic. So,
while this approach can at least be instantiated, it is very expensive. A practical approach
requires two different curves E(Fp) and E ′(Fq) that are closely tied together (cf. Fig 2.2).

E ′(Fq)

E(Fp)

#E(Fp) = q#E ′(Fq) = p

Figure 2.2: A cycle of elliptic curves.

Therefore, we need to find new pairing-friendly curve constructions for this problem.
In practice, given a curve equation over a finite field, computing its order can be done
efficiently with the SEA algorithm, while given p and r, computing the parameters of the
curve equation involves computing a class polynomial (e.g. with Sutherland software [Sut11,
ES10]), and it is infeasible if the curve discriminantD is too large (say more than 20 decimal
digits). Ben–Sasson et al. [BCTV14a] presented the first practical setting of a recursive
proof composition with a cycle of two MNT pairing-friendly elliptic curves [MNT01]. Proofs
generated from one curve can feasibly reason about proofs generated from the other curve
resulting in an unbounded number of recusion layers. To achieve this, one curve’s order is
the other curve’s base field order and vice-versa (i.e. #E ′(Fq) = p and #E(Fp) = q). The
two curves are necessarily of prime order [CCW19, Sec. 7], hence cannot admit an Edwards
form. Moreover, they have low embedding degrees (4 and 6) resulting in large base fields
to achieve a standard security level. The authors proposed a pair of MNT curves with
parameters of 298 bits which they estimated to meet the 80-bit security level in 2014. It
should be noted that it was Karabina and Teske [KT08] who first showed in 2008 that
there always exist a MNT4/MNT6 cycle.

Around approximately the same time as [BCTV14a], Costello et al. [CFH+15] built on
this idea to obtain a bounded recursive proof composition using a 2-chain of two elliptic
curves (cf. Fig 2.3), i.e. a BN curve (with seed x = −(262 +255 +1) from [NAS+08]) defined
over a 254-bit field Fp and a BW6-509 curve constructed using the Brezing–Weng method
(BW) in a way that it has a prime subgroup order equal to p the field characteristic of
BN’s Fp. This set of curves allows a one-layer recursion. Note that both MNT4 and MNT6
respective F∗r fields contain large enough powers of two (217 | r − 1) while Geppetto’s
BN and BW6 are not. Later on, [BCTV14a] authors found a new MNT4/6 pair with
parameters of 753 bits which they estimated at the 128-bit security level. They shared the
parameters of this latter pair with the Coda protocol [BMRS20] developers (now Mina)
who used it to build a recursive SNARK-based light blockchain. They updated the preprint
with this pair of parameters only recently (2020).

A few years after [BCTV14a], motivated by a new proof composition application
(decentralized private computation), ZEXE [BCG+20] proposed a new chain of curves. It
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E ′(Fq)

E(Fp)

#E ′(Fq) = h · p

Figure 2.3: A 2-chain of elliptic curves.

is similar to Geppetto’s chain although the citation was missing. The first curve is a BLS12-
377 defined over a 377-bit field with a subgroup r of 253 bits (247 | r − 1) and, using the
more rudimentary Cocks-Pinch method (CP), the second curve is a CP6-782 of embedding
degree 6, defined over a 782-bit field and having a group order divisible by BLS12-377’s
base field size p. Based on this inner BLS12-377, we proposed in [EHG20] an alternative
outer curve to CP6-782 that is much faster for a recursive SNARK [Gro16] generation and
verification. We used a variant of the Brezing–Weng method to construct a BW6-761 curve
of embedding degree 6 defined over a 761-bit field and enjoying properties for efficient
implementation. Later, in [EHG22], we generalized the BW6-761 curve construction, the
pairing formulas and the group operations to any BW6 curve defined on top of any BLS12
curve, forming a family of 2-chain pairing-friendly curves.

Universal zk-SNARKs Up to this point, all the pairing-based SNARKs use the three
pairing groups G1,G2 and GT whether for proving, verifying or setting the SNARK up.
Therefore, all previously mentioned curves were constructed in order to optimize operations
in the three different groups. Note that the most efficient pairing-based SNARKs have
a trapdoor-ed setup phase specific to the statement to prove (e.g. [Gro16]). Recently, a
new kind of SNARKs was introduced, where the setup phase is not specific to a given
statement but is rather universal in that sense. Groth et al. [GKM+18] proposed a universal
SNARK with a single setup to prove all statements of a given bounded size. However,
Sonic [MBKM19] is considered to be the first practical universal SNARK. This work
inspired many researchers and practitioners who then came up with new and elegant
universal constructions (e.g. AuroraLight [Gab19], PLONK [GWC19], Marlin [CHM+20]).

These universal constructions follow a similar design as Sonic and they use as a funda-
mental building bloc a polynomial commitment (PC) scheme. While there are different
PC schemes with trade-offs, the KZG scheme [KZG10] remains the most efficient. It uses
pairings and therefore its implementation requires a suitable pairing-friendly elliptic curve.
Contrary to the previous pairing-friendly curves used in the SNARK context, KZG-based
universal SNARKs need a curve optimized only for G1 arithmetic and pairings. In fact,
on the one hand, in pairing-based SNARKs with a circuit-specific setup phase, the pairing
is used to verify that some polynomial identities hold in a secret point included in the
trapdoored setup. In KZG-based universal, on the other hand, the pairing is used to open
a polynomial commitment (and element in G1) to a field element, and the polynomial
identities are verified in the field. This observation inspired us in [EHG22], to investigate
the use of Barreto–Lynn–Scott curves of embedding degree 24 (BLS24) to instantiate
KZG-based universal SNARKs. At the 128-bit security level, the coefficient ring of the
elements of BLS24 G1 is much smaller compared to BLS12. We proposed a BLS24-315
curve defined over a 315-bit field with a subgroup order r of 253 bits such that 222 | r− 1.
Moreover, similarly to the BLS12-BW6 chains, we characterized all 2-chains that can be
formed with a BLS24 as an inner curve and BW6 as an outer curve. We short-listed a
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few BW6 curves (e.g. BW6-633 and BW6-672) and looked into Cocks-Pinch curves of
higher embedding degrees (CP8 and CP12) for a more conservative security. This work
was implemented in the gnark ecosystem [BPH+22a] using PLONK proof system.

Overview of the KZG polynomial commitment. A polynomial commitment scheme
allows to commit to a polynomial and then open it at any point, showing that the value
of the polynomial at a point is equal to a claimed value p(z) = y. It consists in four
algorithms

• (σv, {σp})← Setup(τ , 1λ) : for some security parameter λ, sample randomly τ ← Fr
and then compute σp = τ iG1 for i ∈ {1, . . . ,m} and σv = τG2.

• C ← Commit(σp, p) : given the polynomial p(x) =
n∑
i=0

pix
i ∈ Fr[x] of degree n < m

and the proving key σp, compute C = p(τ) ·G1 =
n<m∑
i=0

pi · τ iG1

• π ← Open(p, y, z) : to prove that p(z) = y, compute the polynomial q(x) = (p(x)−
y)/(x− z) and then the proof π = q(τ) ·G1

• 0/1 ← Verify(C, π, σv) : compute Pz = zG2 and Py = yG1, and then verify that
e(π, σv − Pz) = e(C − Py, G2).

Proof (correctness of the KZG protocol).

e(π, σv − Pz) ≡ e(C − Py, G2)

e(q(τ) ·G1, τG2 − zG2) ≡ e(p(τ) ·G1 − yG1, G2)

e(G1, G2)︸ ︷︷ ︸
∈ GT \ {1}

q(τ)(τ−z) ≡ e(G1, G2)︸ ︷︷ ︸
∈ GT \ {1}

p(τ)−y

non-pairing recursion. The universality of these constructions comes from the nature
of the polynomial commitment scheme. By swapping the KZG scheme for other PC
schemes [BCC+16,VP19,BFS20], one gets new transparent (no setup) SNARKs [KPV19,
BFS20] and new transparent recursive SNARKs as first proposed by Bowe, Grigg and
Hopwood in [BGH19] (Halo) and then formalized and generalized in [BCMS20,BDFG21].
These recursive constructions build on the discrete logarithm based PC from [BCC+16]
and Bulletproofs [BBB+18] and one might want to instantiate them with a non-pairing-
friendly elliptic curve like ed25519. However, having an efficient recursion requires a cycle
of elliptic curves as in [BCTV14a], hence the curves are of prime order, which means
Edwards and Montgomery forms are not possible. Although this time, the curves do not
need to be pairing-friendly. To this end, Halo’s authors derived an efficient cycle for SNARK
implementation, namely the Tweedledum-Tweedledee cycle. Later, Hopwood proposed the
more efficient Pasta cycle [Hop20]. Note that finding such cycles is much easier than finding
pairing-friendly cycles. It was investigated previously in a different context by Stange and
Silverman [SS11]. It should be noted that it was François Morain who first experimentally
discovered the existence of non-pairing cycles in his implementation of ECPP [Mor07]
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and their definition was later formalized in [Mih07a] by Preda Mihailscu in the context
of primality testing. Finally, as a future work, Halo suggests using the same SNARK
techniques with a hybrid cycle where one curve is pairing-friendly and the other is not.
Thereafter, Hopwood proposed a hybrid cycle, Pluto-Eris [Hop21]. Such a cycle can be
constructed from any prime-order pairing-friendly curve (e.g. BN [BN06], Freeman [Fre10],
MNT [MNT01]).

2.2.3 Elliptic curves in SNARKs

SNARKs enable verifying non-deterministic polynomial time (NP) computations with
substantially lower complexity than those required for classical NP verification. In many
applications (e.g. privacy-preserving cryptocurrencies, zk-rollups, verifiable computation
outsourcing), the NP-computation revolves around proving the knowledge of a hash preim-
age or the verification of a cryptographic signature. In CØCØ [KZM+15], Kosba et al. pro-
posed a library of cryptographic primitives that can be efficiently proved in a SNARK. In
particular, the authors looked into proving an Elliptic Curve Diffie-Hellman (ECDH) key
exchange. They constructed a new elliptic curve to efficiently implement the operation
required in key exchanges, i.e. the scalar multiplication (cf. Fig. 2.4).

BN curve EBN(Fp)
of prime order r

elliptic curve E0(Fr)
of order 4s

CØCØ: given r, search for a curve
E0 over Fr of order 4 times a prime

statement
in a group of
prime order s
over a field Fr

SNARK with
a pairing e :

G1 ×G2 → GT

#Gi = r

polynomials
in Fr[X]

arithme-
tisation

proof of
the circuit

Figure 2.4: Kosba et al. construction [KZM+15]

This curve defined over the scalar field Fr of the BN curve, with the seed 0x44e992b44a6909f1
from [BCTV14a], was given in Montgomery form for further optimizing the arithmetic
inside a SNARK. The paper also mentioned converting this associated curve to Edwards
form in order to efficiently prove EdDSA signatures. Following this work, the Zcash team
introduced the JubJub curve [ZCa21] which is a similar curve in twisted Edwards form
associated to BLS12-381, alongside further algebraic optimizations. This curve allowed
Zcash to efficiently implement a collision-resistant variant of an EC-based Pedersen hash
inside a SNARK. Practitioners who proposed tailored elliptic curves for SNARKs (BN254,
BLS12-377, BLS24-315, BW6-761, BW6-633) each time also proposed an associated twisted
Edwards curve defined over the scalar field. Finally, Masson et al. [MSZ21] performed an
exhaustive search of associated curves over BLS12-381 with small Complex Multiplica-
tion discriminant in order to speed up the curve arithmetic using a fast endomorphism.
They found an isolated curve with discriminant D = −8, called Bandersnatch. A similar
associated curve is unlikely to be found for other SNARK curves of interest.

We stress that the problem solved in the CØCØ construction is partway similar to
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the one solved in the Geppetto construction. Remember that in a proof composition, one
requires writing efficiently a pairing computation as a SNARK statement and to this end,
researchers came up with new elliptic curves that efficiently encode the pairing in the
SNARK (cf. Fig. 2.5). In CØCØ, the SNARK curve is fixed (EBN(Fp) of order r) and the
authors look for a curve (E0(Fr)) for the statement (ECDH). In Geppetto, the statement
is “the verification of a previously generated proof” and its curve is fixed (EBN(Fp) of order
r) as it was already used to generate that previous proof. The authors look for a new
SNARK curve (BW6(Fs) of order h · p) to prove “the proof composition” statement.

pairing-friendly curve EBN(Fp)
of prime order r

elliptic curve BW6(Fs)
of order h p

Geppetto: given p, search for a pairing-friendly curve
BW6 of order h · p over a field Fs

SNARK-1 with
a pairing e :

G1 ×G2 → GT

#Gi = r

polynomials
in Fp[X]

SNARK-2 with
a pairing e :

G1 ×G2 → GT

#Gi = p

arithme-
tisation

proof of
the circuit

Figure 2.5: Geppetto construction [CFH+15]
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Chapter

3
Elliptic curves for SNARKs

In this chapter we investigate the use of elliptic curves in pairing-based SNARKs. We derive
new tailored constructions and focus on efficient arithmetic, particularly co-factor clearing
and subgroup membership testing. This chapter, in part, is a reprint of the material as it
appears in our published works [AEHG22] and [EHGP22].

3.1 Constructions

Pairing-based SNARKs can be instantiated with any secure pairing-friendly elliptic curve.
For efficiency, we require a fast arithmetic in Fr (where r is the curve prime subgroup
order), in G1 and in G2, and a fast pairing computation. For security, we are interested in
the 128-bit security level in G1, G2 and GT .

3.1.1 Efficiency

The Setup and Prove algorithms (Fig. 2.1) involve solving multiple large instances of tasks
about polynomial arithmetic in Fr[X] and multi-scalar multiplication (MSM) over G1 and
G2. The Verify algorithm (Fig. 2.1) involves computing a product of pairings and an
evaluation in GT . Fast arithmetic in Fr[X], when manipulating large-degree polynomials,
is best implemented using the Fast Fourier Transform (FFT) [Pol71] and MSMs of large
sizes are best implemented using a variant of Pippenger’s algorithm [BDLO12, Section 4]
(cf. Chapter 5). For example, Table 4.21 reports the numbers of group operations (MSM)
required in the Setup, Prove and Verify algorithms in the [Gro16] SNARK and the KZG-
based PLONK universal SNARK [GWC19]. The report excludes the number of FFTs as
it changes from one implementation to another, but these usually consume less compute
time than group operations.

An efficient implementation of the FFT over Fr requires r−1 to split into small primes
or ideally to be divisible by a large power of 2. This narrows the search of pairing-friendly
elliptic curves to the ones with a subgroup order r such that 2L | r − 1 for a large integer
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Table 3.1: Cost of Setup, Prove and Verify algorithms for [Gro16] and PLONK. m =
number of wires, n = number of multiplication gates, a = number of addition gates and
` = number of public inputs. MG = multiplication in G and P=pairing. Note: Both Groth16
and PLONK verifiers have a dependency on the number of public inputs `, but for PLONK
it is just a polynomial evaluation (FFT).

Setup Prove Verify

[Gro16] 3n MG1

m MG2

(3n+m− `) MG1

n MG2

3 P
` MG1

PLONK (KZG) d≥n+a MG1

1 MG2

9(n+ a) MG1

2 P
18 MG1

L ≥ 1. This was suggested first in [BCG+13] and yielded the GMV6-183 curve with
231 | r − 1.

Recently, a new algorithm was proposed by Ben–Sasson et al. [BCKL21] that imple-
ments a variant of the FFT over non-smooth arbitrary fields Fp′ (ECFFT). However, this
algorithm suffers from two major drawbacks: finding an elliptic curve over Fp′ with a large
2L-torsion and efficiently implementing the algorithm in the canonical basis. Since the new
algorithm is asymptotically much slower than the basic FFT over smooth fields, designing
a SNARK curve with smooth r − 1 remains the best approach.

This narrows the search to an elliptic curve with the following requirements:

(i) valid parameters: integers p, r, t (p(u), r(u) ∈ N, t(u) ∈ Z), prime p.

(ii) a subgroup order r such that 2L | r − 1 for a large integer L ≥ 1,

(iii) a fast pairing,

(iv) a fast arithmetic in G1 and

(v) a fast arithmetic in G2.

For KZG-based universal SNARKs, the last requirement can be dropped.
Elliptic curves proposed in the literature to suit SNARKs belong to one of the families

discussed in the preliminaries in section 1.3. Except for the Cocks-Pinch curve CP6-782,
all the curves are in families defined by polynomials. Condition (ii) becomes a congruence
condition on the seed x of the polynomial r(x) (cf. Table 3.2).

Pairing computations take place mainly in Fpk and it is important to construct the Fpk
tower such that the arithmetic is as efficient as possible. Pairing-friendly tower extensions
are built using a sequence of quadratic and cubic sub-extensions. The ideal way is to start
with an optimal quadratic extension Fp2 = Fp[u]/(u2+1) that arises when p ≡ 3 mod 4. For
the discussed families, satisfying condition (iii) boils down then to satisfying a congruence
equation in the seed x alongside the previous congruence condition (cf. Table 3.2). Note that
even seeds allow an additional speedup in the pairing computation (final exponentiation)
for some families (e.g. BLS12 and BLS24 [GF16]). Finally, as is the custom in pairing-
based cryptography, the Miller loop scalar (e.g. u = t − 1 for BLS curves) should have
a small Hamming weight. For the curve families we are interested in, the optimal Miller
loop scalar is a low-degree polynomial in the seed x, hence we are additionally looking for
a sparse seed x in (signed) binary representation.

Condition (iv) is mainly related to the bitsize of p as the point coordinates are in Fp.
The bitsize of p varies for each family and is constrained by the security. One requires r of
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about 256 bits, and each family has a fixed parameter ρ = log2 p/ log2 r, 1 ≤ ρ ≤ 2, hence
p is usually (but not always) larger than r.

Except for KZG-based universal SNARKs, one requires also a fast arithmetic in G2.
As discussed in the preliminaries, the curves from Table 1.1 have a twist of degree d = 2, 4
or 6 and thus G2 is isomorphic to E ′[r](Fpk/d) for an appropriate d-twist E ′. Condition (v)
is immediately related to the choice of k and d (cf. Tab 3.2).

Congruence conditions on the seed x to achieve (ii).

The subgroup order r is given by an irreducible polynomial r(x) in Q[x]. Computing the
congruence conditions on x0 such that 2L | r(x0)− 1 given L is equivalent to finding the
roots x0 of r(x)− 1 modulo 2L. Because 2 is a prime, we define in Alg. 3.1 a Hensel-like
root-lifting technique inspired by [GS21, §A], with auxiliary functions in Algs. 3.2 and 3.3.

For BN curves, one has r(x) − 1 = 6x(6x3 + 6x2 + 3x + 1). With 2L−1 | x, then
immediately 2L | r − 1. The other option is 2L−1 | 6x3 + 6x2 + 3x+ 1 and we run Alg. 3.1
(we were not able to derive a generic formula). Note that gcd(p(x) − 1, r(x) − 1) = 6x.
For BLS12 and BLS24 curves, gcd(p(x) − 1, r(x) − 1) = x − 1. For BLS12, r(x) − 1 =
x2(x2 − 1) and for BLS24, r(x)− 1 = x4(x4 − 1) and the results of Table 3.2 follow. For
KSS16, we did not obtain a generic formula and we derived the condition for L = 64
in Table 3.2 with Alg. 3.1. Note that for curves with D = 1, p ≡ 1 mod 4 is required
otherwise the curve would be supersingular. For KSS18 curves, Alg. 3.1 outputs another
congruence but p is always even in that case so we discarded it. For BN and KSS16
we picked L = 64 and obtained the conditions x0 ≡ u0 mod c · 2L−1 but for a smaller
L0 < L, the reduction u0 mod c · 2L0−1 gives the answer. Algorithms 3.1, 3.2 and 3.3 are
implemented in SageMath at https://gitlab.inria.fr/tnfs-alpha/alpha, in the file
sage/tnfs/gen/generate_curve_utils.py.

3.1.2 Security

We look at the security of all the pairing-friendly families of the proposed curves both
from a generic point of view (TNFS attack) and a SNARK-specific point of view (Cheon’s
attack).

TNFS attack.

In 2015, [BGK15] revisited the Tower-NFS algorithm (TNFS) to compute discrete log-
arithms in Fpk . Then in 2016, Kim with Barbulescu combined it with other variants of
NFS and exploited the extension fields to improve the TNFS algorithm. This resulted in
an expected asymptotic complexity LQ(α, c) = exp

(
(c+ o(1))(logQ)α(log logQ)1−α) to

be Lpk(1/3, (48/9)1/3 ≈ 1.747) instead of Lpk(1/3, (96/9)1/3 ≈ 2.201) with the NFS-HD
algorithm of [BGGM15]. More important, the complexity of TNFS is lower than the gen-
eral NFS algorithm in prime fields: Lpk(1/3, (64/9)1/3 ≈ 1.923). The key-sizes should be
enlarged, and several papers deal with security estimates of TNFS [MSS16,BD19,GS21,
Gui20,DGP20]. However these papers estimate the security level, but they do not scale
with respect to a record computation. This is not yet possible as the first record computa-
tion with the TNFS algorithm was published after them, in [DGP21]: it runs the TNFS

1For GMV6 and KSS18, one needs to construct respectively the Fp6 and Fp18 towers starting from Fp3 .
In this case, one looks for the smaller cubic non-residue in Fp.

https://gitlab.inria.fr/tnfs-alpha/alpha
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Family, (i)
r, p ∈ N, t ∈ Z

(ii)
r ≡ 1 mod 2L

(iii) p ≡ 3
mod 4

(v) G2

coord. in
BN x ≡ 2570880382155688433 mod 263 ⇒ 264 | r − 1 X Fp2
any x x ≡ 0 mod 2L−1 ⇒ 2L | r − 1, 2L | p− 1 7

BLS12 x ≡ 1 mod 3 · 2L−1 ⇒ 2L | r − 1, 2L−1 | p− 1 7

x ≡ 1 x ≡ 2L−1 − 1 mod 3 · 2L−1 ⇒ 2L | r − 1, 6 | p− 1 X Fp2
mod 3 x ≡ 2L/2 mod 3 · 2L/2 ⇒ 2L | r − 1, 6 | p− 1 X

BLS24 x ≡ 1 mod 3 · 2L−2 ⇒ 2L | r − 1, 2L−2 | p− 1 7

x ≡ 1 x ≡ 2L−1 − 1 mod 3 · 2L−2 ⇒ 2L | r − 1, 6 | p− 1 3 Fp4
mod 3 x ≡ 2L/4 mod 3 · 2L/4 ⇒ 2L | r − 1, 6 | p− 1 3

MNT4, t = x+ 1 x ≡ 0 mod 2L/2 ⇒ 2L | r − 1, 2L/2 | p− 1 7 Fp2
MNT6 x ≡ 0 mod 2L−1 ⇒ 2L | r − 1, 22L | p− 1 7 Fp3

GMV6(h = 4)
any x x ≡ 0 mod 2L−1 ⇒ 2L | r − 1, 2L−1 | p− 1 NA1 Fp3

KSS16
(x ≡ ±25 mod 70)

±14398186520986421885,±37456616613123361405
mod 35 · 262 ⇒ 264 | r − 1, p ≡ 1 mod 4

7 Fp4

KSS18
(x ≡ 14 mod 42)

x = 14 · 2L/3 mod 42 · 2L/3 ⇒ 2L | r − 1, 12 | p− 1 NA1 Fp3

Table 3.2: Conditions (i), (ii), (iii), and (v) for Table 1.1 families. For BN curves with
p ≡ 3 mod 4 and KSS16 curves, it was not possible to obtain a general rule. The residue of
x mod 2L is computed by Alg. 3.1 with input L = 64 but any L can be given. For KSS18
curves, the other residues x do not give a prime p. Condition (iii) is not possible.

Algorithm 3.1: Congruence conditions on the seed x to achieve (ii)
Input: polynomial s(x) ∈ Q[x], modulus m and congruence conditions {ai}i≥0 such that

x0 ≡ ai mod m⇒ s(x0) ∈ Z, prime integer `, integer L > 0
Output: Residues uj, integers Lj and moduli mj s.t. for all xj ≡ uj mod mj, s(xj) ∈ Z

and s(xj) ≡ 0 mod `Lj , Lj ≥ L
1 for ai ∈ {ai}i≥0:
2 si(x)← s(m · x+ ai) ∈ Z[x] (this ensure that si(x) has integer coefficients)
3 vi ← valuation`(content(si(x)))
4 si(x)← si(x)/`vi

5 for rj ∈ Z/`Z a simple root of si(x) modulo `:
6 rj ← liftN(rj)
7 (uj,mj, Lj)← lift_simple_root(si, rj, ai + rj ·m,m · `, 1 + vi, `, L)
8 S ← S ∪ {(uj,mj, Lj)}
9 for rj ∈ Z/`Z a multiple root of si(x) modulo `:

10 rj ← liftN(rj)
11 Sj ← lift_multiple_root(si, rj, ai + rj ·m,m · `, 1 + vi, `, L)
12 S ← S ∪ Sj
13 return S
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Algorithm 3.2: Hensel lifting of simple roots
Input: polynomial si(x) ∈ Z[x], modulus mi, residue ui mod mi, root ri ∈ N

s.t. si(ri) ≡ 0 mod `, prime integer `, integers Li and bound L > 0
Output: Residue uj, integer Lj and modulus mj s.t. for all xj ≡ uj mod mj,

si(xj) ≡ 0 mod `Lj−Li

1 def lift_simple_root(si, ri, ui,mi, Li, `, L):
2 while Li < L:
3 si(x)← si(` · x+ ri)/`
4 Li ← Li + 1
5 ri ← rootZ/`Z(si(x)) #(by Hensel, a simple root lifts to one root only)
6 ui ← ui + liftN(ri) ·mi

7 mi ← ` ·mi

8 return (ui,mi, Li)

Algorithm 3.3: Hensel lifting of multiple roots
Input: polynomial si(x) ∈ Q[x], modulus mi, residue ui mod mi, multiple root ri mod `,

prime integer `, integer Li and bound L > 0
Output: Residues uj, integers Lj and moduli mj s.t. for all xj ≡ uj mod mj,

si(xj) ≡ 0 mod `Lj−Li

1 def lift_multiple_root(si, ri, ui,mi, Li, `, L):
2 S ← [(si, ri, ui,mi, Li)] a linked list
3 R← {}
4 while S is not empty:
5 (si, ri, ui,mi, Li)← pop(S)
6 si(x)← si(` · x+ ri)/`
7 vi ← valuation`(content(si(x)))
8 si(x)← si(x)/`vi

9 Li ← Li + 1 + vi
10 if Li ≥ L:
11 R← R ∪ {(ui,mi, Li)}
12 else:
13 for ri ∈ Z/`Z a simple root of si(x) modulo `:
14 ri ← liftN(ri)
15 (uj,mj, Lj)← lift_simple_root(si, ri, ui + ri ·mi,mi · `, Li, `, L)
16 R← R ∪ {(uj,mj, Lj)}
17 for ri ∈ Z/`Z a multiple root of si(x) modulo `:
18 ri ← liftN(ri)
19 S ←append(S, (si, ri, ui + ri ·mi,mi · `, Li))
20 return R
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Table 3.3: Security level estimates of MNT curves from [Gui21], and of the GMV curve
obtained with the software from [GS21].

curve k D ref r
bits

p
bits

pk

bits
DL cost
in Fpk

MNT4-298 4 614144978799019 [BCTV14a] 298 298 1192 277

MNT6-298 6 614144978799019 [BCTV14a] 298 298 1788 287

MNT4-753 4 241873351932854907 [BCTV14a] 753 753 3012 2113

MNT6-753 6 241873351932854907 [BCTV14a] 753 753 4517 2137

MNT4-992 4 95718723 [Gui21] 992 992 3966 2126

MNT6-992 6 95718723 [Gui21] 992 992 5948 2156

GMV6-183 6 21048712401 [BCG+13] 181 183 1093 271

in a field Fp6 but new security estimates are not extrapolated. In Table 3.3 we reproduce
the key-sizes from [GS21,Gui21].

For pairing-friendly curves with parameters given by polynomials evaluated at some
seed, the Special -TNFS algorithm applies. It exploits the special form of the prime p,
resulting in an asymptotic complexity of Lpk(1/3, (32/9)1/3 ≈ 1.526) in the most favorable
case. It means that compared to prime fields Fq, the total size k log p should be twice as
large to ensure the same level of security: k log p = 2 log q. For MNT and GMV curves, p
is given by a quadratic polynomial and the special variant of TNFS is not better than the
generic methods (the degree of p(x) should be at least 3 to make a difference). For the
GMV6 given in Table 1.1 (parameters in bold), a change of variables v = −26x− 3 gives
t(v) = v + 1, r(v) = (v2 − v + 1)/13 and p(v) = 4r(v) + t(v)− 1 = (4v2 + 9v + 4)/13 with
smaller coefficients. We can reasonably assume that the sizes required for GMV6 curves
are the same as for MNT6 curves. Such sizes were given in [Gui21, § MNT Curves]. We
run the SageMath code of [GS21] and obtain a security estimate of 71 bits in GF(p6) for
the GMV6 curve (Table 3.3). Security levels for BLS12-377, CP6-782 and BW6-761 were
provided in [EHG20, § C] (Table 3.4).

Cheon’s attack.

Cheon [Che10] showed that given G, [τ ]G and [τT]G, with G a point in a subgroup G
of order r with T | r − 1, it is possible to recover τ in 2(d

√
(r − 1)/Te + d

√
Te) ×

(ExpG(r) + log r × CompG) where ExpG(r) stands for the cost of one exponentiation in G by
a positive integer less than r and CompG for the cost to determine if two elements are equal
in G. According to [Che10, Theorem 2], if T ≤ r1/3, then the complexity of the attack
is about O(

√
r/T) exponentiation by using O(

√
r/T) storage. Sakemi et al. reported an

implementation on a 160-bit elliptic curve in [SHI+12].
In SNARKs such as [Gro16] and KZG-based schemes, the Setup keys include elements

[{τ i}T
i=0]G ∈ G where T ∈ N∗ is at least the size of the arithmetic circuit related to the

statement to prove, and τ is the secret trapdoor. The property T | r − 1 also holds since
we need r − 1 to be highly 2-adic (condition (ii)). So, given these auxiliary inputs, an
attacker can recover the secret using Cheon’s algorithm in time O(

√
r/T), hence breaking

the SNARK soundness. We stress that this attack vector is not inherent to the curve
design but to the SNARK design. Given a curve where r ≡ 1 mod 2L used in a SNARK
requiring a setup of size 2L

′
where L′ < L, Cheon’s attack runs in O(

√
r/L′) and not

O(
√
r/L). To the best of our knowledge, the Filecoin circuit (L′G1

= 28, L′G2
= 27) is the



Chapter 3 - Elliptic curves for SNARKs 37

Table 3.4: Security level estimates of BLS curves, CP6-782, BW6 and CP8, CP12
curves from [EHG20, EHG22], with seeds u377 = 0x8508c00000000001, u379 =
0x9b04000000000001, u315 = −0xbfcfffff, u317 = 0xe19c0001.

curve k D ref r
bits

p
bits

pk

bits
DL cost
in Fpk

BLS12-377, u377 12 3 [BCG+20] 253 377 4521 2126

BLS12-379, u379 12 3 [EHG22, Tab. 9] 254 379 4537 2126

BLS24-315, u315 24 3 [EHG22, Tab. 10] 253 315 7543 2160

BLS24-317, u317 24 3 [EHG22, Tab. 10] 255 317 7599 2160

outer curve with a BLS12 curve
CP6-782, u377 6 339 [BCG+20] 377 782 4691 2138

BW6-761, u377 6 3 [EHG20] 377 761 4566 2126

BW6-764, u379 6 3 [EHG22, Tab. 11] 379 764 4584 2126

outer curves with the BLS24-315 curve
BW6-633, u315 6 3 [EHG22, Tab. 11] 315 633 3798 2124

BW6-672, u315 6 3 [EHG22, Tab. 11] 315 672 4032 2128

CP8-632, u315 8 4 [EHG22, Tab. 7] 315 632 5056 2140

CP12-630, u315 12 3 [EHG22, Tab. 7] 315 630 7560 2166

Table 3.5: Security level estimates of BN curves and outer curves with the software shipped
with [GS21].

curve k D ref r
bits

p
bits

pk

bits
DL cost
in Fpk

BN-256 u = 18680333 Pinocchio 12 3 [PHGR13] 256 256 3063 2103

BN-254 u = 262 − 254 + 244 Pantry 12 3 [BFR+13] 256 256 3038 2102

BN-254 u = −(262 + 255 + 1) Geppetto 12 3 [CFH+15] 254 254 3038 2102

BN-254 u = 0x44e992b44a6909f1 Ethereum 12 3 [BCTV14b] 254 254 3044 2103

outer curve with the Geppetto BN curve
BW6-509 6 3 [CFH+15] 254 509 3051 2102
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Table 3.6: Properties of SNARK curves from the literature.

Curve x L
r = #G1

(bits)
p, G1

(bits)
pk/d, G2

(bits)
p ≡ 3
mod 4

security (bits)
G1 F∗pk

BN-256
[PHGR13]

18680333

HW2-NAF(6x+ 2) = 19
5 256 256 512 X 128 103

BN-254
[BFR+13]

262 − 254 + 244

HW2-NAF(6x+ 2) = 7
45 254 254 508 × 127 102

GMV6-183
[BCG+13]

0x8eed757d90615e40000000
HW(−26x− 2) = 16

31 181 183 549 NA2 90 71

BN-254
[BCTV14b]

0x44e992b44a6909f1
HW2-NAF(6x+ 2) = 22

28 254 254 508 X 127 103

BLS12-381
[Bow17]

-0xd201000000010000
HW(x) = 6

32 255 381 762 X 127 126

biggest application circuit of public interest.
While taking into account this attack at the curve design level might limit the attack

vector, this prevents a nice speed up in the pairing computation. As we observed in [EHG22],
having a large L s.t. r(x) ≡ 1 mod 2L is often entangled to having a large number of
consecutive zeroes in the seed x. This allows mixing efficiently the Karabina [Kar13]
and Granger-Scott [GS10] cyclotomic squaring algorithms, hence speeding up significantly
the final exponentiation. That is said, Cheon’s attack must be taken into account when
implementing a SNARK circuit with a given elliptic curve.

3.1.3 Examples

In Table 3.6, we recall the literature curves presented in the state-of-the-art section 2.2
and summarize their SNARK-friendliness properties and security levels.

We see that only the BLS12-381 satisfies conditions (ii), (iii), (iv), (v) and has almost
a 128-bit security level. KSS16 and KSS18 families were not investigated in the SNARK
literature. We considered the BLS24 family in [EHG22] in the context of 2-chains, hence
the proposed BLS24-315 does not satisfy the condition (iii) by definition. In table 3.7, we
propose new BN and BLS24 that satisfy all the requirements. We also propose the first
KSS16 and KSS18 SNARK curves and compare them to the existing curves. We omit
to revisit the GMV6 family as a 128-bit secure curve would be defined over a large field
(around 704 bits).

KSS16 and KSS18. The KSS family was not investigated previously in the SNARK
context. KSS16 and KSS18 defined respectively over fields of size 328-bit and 348-bit offer
128 bits of security. We suggest in [AEHG22] the KSS16-329 and KSS18-345 that fulfill
all conditions except p ≡ 3 mod 4 (condition (iii) does not apply to KSS18 and is not
possible for KSS16).

BLS24. We previously investigated in [EHG22] the BLS family with embedding degree
k = 24 in the recursive SNARK context. However, we only considered in that paper lifting

2For GMV6-183, 3 is the smallest cubic non-residue on Fp.
3For KSS18-345, 2 is the smallest cubic non-residue on Fp.
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Curve x L
r = #G1

(bits)
p, G1

(bits)
pk/d, G2

(bits)
p ≡ 3
mod 4

security (bits)
G1 F∗pk

BN383
0x49e69d16fdc80216226909f1

HW2-NAF(6x+ 2) = 30
44 383 383 766 X 191 123

BLS24-317
0xd9018000

HW2-NAF(x) = 6
60 255 317 1268 X 127 160

KSS16-329
0x38fab7583
HW(x) = 12

19 255 329 1316 X 127 140

KSS18-345
0xc0c44000000

HW(x) = 6
78 254 345 690 NA3 127 150

Table 3.7: New SNARK curves from the BN, BLS24, KSS16 and KSS18 families.

of simple roots and proposed the BLS24-315 curve with 222 | r − 1. In [AEHG22] we
consider multiple roots (cf. 3.3) and propose the BLS24-317 curve with 260 | r − 1 that
fulfills all SNARK-friendliness conditions. This curve is particularly suitable for KZG-
based SNARKs compared to previous known curves. As a reference example, compared
to the widely used BLS12-381, it takes 14% less time to generate a PLONK proof of a
circuit of 40000 constraints (implemented in gnark [BPH+22a]). The setup generation is
also 23% faster but the verification is 30% slower, although this can be likely amortized
with a batch verification. The verification overhead in BLS24 is due to the cost of Fp24
arithmetic in the pairing computation. However, this can be somewhat reduced using a
2n-tuple-and-add Miller loop following [CBGW10], which we have not implemented in
gnark-crypto yet at the time of writing.

3.2 Efficient arithmetic

In this section, we focus on two important cryptographic operations: Hashing to an elliptic
curve and subgroup membership. These optimizations work for a wide range of elliptic
curves including in particular SNARK-friendly curves. Hash from a (random) string to
a point on the elliptic curve is an important cryptographic operation. It has two steps:
first mapping a string to a point P (x, y) on the curve, then multiplying the point by the
cofactor so that it falls into the cryptographic subgroup. For the first step, there is the
efficient Elligator function for curves with j-invariant not 0 nor 1728 and having a point of
order 4. For other curves including BLS curves of j-invariant 0, Wahby and Boneh propose
an efficient map in [WB19]. Because the BLS12-381 curve is not of prime order, the point
is multiplied by the cofactor c1 to ensure the hash function to map into the cryptographic
subgroup of 255-bit prime order. Wahby and Boneh wrote in [WB19] that it is sufficient to
multiply by (x− 1), instead of the cofactor (x− 1)2/3. They observed that for any prime
factor ` of (x− 1), the BLS12-381 curve has no point of order `2. We prove this trick and
show that it works for a wide range of elliptic curves.

Another important operation is to test whether a given point belongs to the right
subgroup of order r, i.e. G1, G2 or GT . This is a crucial operation to avoid small subgroups
attacks. This test can be done much faster if an efficient endomorphism is available, which
is usually the case for pairing-friendly curves.
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3.2.1 Faster co-factor clearing

Let EndFp(E) denote the ring of Fp-endomorphisms ofE, letO denotes a complex quadratic
order of the ring of integers of a complex quadratic number field, and O(∆) denotes the
complex quadratic order of discriminant ∆.

Theorem 3.1 ( [Sch87, Proposition 3.7]). Let E be an elliptic curve over Fp and n ∈ Z≥1

with p - n. Let πp denote the Frobenius endomorphism of E of trace t. Then,

E[n] ⊂ E(Fp) ⇐⇒


n2 | #E(Fp),
n | p− 1 and

πp ∈ Z or O
(t2 − 4p

n2

)
⊂ EndFp(E).

In [EHGP22], we apply this theorem to the polynomial families of the taxonomy paper
of Freeman, Scott and Teske [FST10]. The families are designed for specific discriminants
D = 1 for constructions 6.2, 6.3 and 6.4, D = 3 for construction 6.6 and some of the
KSS families, D = 2 for construction 6.7. First we identify a common cofactor within the
family which has a square factor, then we compute its gcd with p(x) − 1 and y(x). We
summarize our results in the following tables and provide a SageMath verification script
at https://gitlab.inria.fr/zk-curves/cofactor.

Construction 6.6

The family of pairing-friendly BLS curves appeared in [BLS03]. A BLS curve can have an
embedding degree k multiple of 3 but not 18. Common examples are k = 9, 12, 15, 24, 27, 48.
A generalization was given in [FST10] and named Construction 6.6. Let k be a positive
integer with k ≤ 1000 and 18 - k. Construction 6.6 is given in Table 3.8. Then (t, r, p)
parameterizes a complete family of pairing-friendly curves with embedding degree k and
discriminant 3. Next, in Table 3.9, we compute the cofactor polynomial c1(x) for Con-
struction 6.6 family. We recall that y(x) satisfies the Complex Multiplication equation
4p(x) = t(x)2 + Dy(x)2. To prove the results of Table 3.9, we will need some basic
polynomial results that we prove in Lemmas 3.1, 3.2, 3.3, and 3.4.

Lemma 3.1. Over the field of rationals Q, Φd(x) denotes the d-th cyclotomic polynomial,
and for all the distinct divisors d of n including 1 and n,

xn − 1 =
∏
d|n

Φd(x) . (3.1)

Lemma 3.2. For any odd k ≥ 1 not multiple of 3 (k ≡ 1, 5 mod 6), we have

x2 − x+ 1 | x2k − xk + 1 . (3.2)

Proof (of Lemma 3.2). By Lemma 3.1, x6k − 1 is a multiple of Φ1 = x − 1, Φ2 = x + 1,
Φ3 = x2 + x+ 1 and Φ6 = x2 − x+ 1. Since

x6k − 1 = (x3k − 1)(x3k + 1) = (xk − 1)(x2k + xk + 1)(xk + 1)(x2k − xk + 1)

and Φ1Φ3 | x3k − 1 but Φ6 - x3k − 1 because k is odd, nor xk + 1 because k is not multiple
of 3, then Φ6 = x2 − x+ 1 should divide the other term x2k − xk + 1.

https://gitlab.inria.fr/zk-curves/cofactor
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Table 3.8: Construction 6.6 from [FST10, §6], formulas for k = 9, 15 mod 18 from ePrint.

k r(x) t(x) y(x) p(x) x mod 3

1
mod 6

Φ6k(x) −xk+1 + x+ 1 (−xk+1 + 2xk − x− 1)/3
(x+ 1)2(x2k − xk + 1)/3

−x2k+1 2

2
mod 6

Φ3k(x) xk/2+1 − x+ 1 (xk/2+1 + 2xk/2 + x− 1)/3
(x− 1)2(xk − xk/2 + 1)/3

+xk+1 1

3
mod 18

Φ2k(x) xk/3+1 + 1 (−xk/3+1 + 2xk/3 + 2x− 1)/3
(x2 − x+ 1)2(x2k/3 − xk/3 + 1)/3

+xk/3+1 2

9, 15
mod 18

Φ2k(x) −xk/3+1 + x+ 1 (−xk/3+1 + 2xk/3 − x− 1)/3
(x+ 1)2(x2k/3 − xk/3 + 1)/3−

x2k/3+1 2

4
mod 6

Φ3k(x) x3 + 1 (x3 − 1)(2xk/2 − 1)/3
(x3 − 1)2(xk − xk/2 + 1)/3

+x3 1

5
mod 6

Φ6k(x) xk+1 + 1 (−xk+1 + 2xk + 2x− 1)/3
(x2 − x+ 1)(x2k − xk + 1)/3

+xk+1 2

0
mod 6

Φk(x) x+ 1 (x− 1)(2xk/6 − 1)/3)
(x− 1)2(xk/3 − xk/6 + 1)/3

+x
1

Lemma 3.3. For any odd k ≥ 1 such that (k ≡ 1 mod 6), we have

x2 − x+ 1 | xk+1 − x+ 1 and x2 − x+ 1 | xk+1 − 2xk + x+ 1 . (3.3)

Proof (of Lemma 3.3). Let ω, ω ∈ C be the two primitive 6-th roots of unity that are the
two roots of x2−x+1. Since k ≡ 1 mod 6 and ω6 = ω6 = 1, then ωk = ω,ωk = ω,ωk+1 = ω2

and ωk+1 = ω2. Then ωk+1 − ω + 1 = ω2 − ω + 1 = 0 and ωk+1 − ω + 1 = ω2 − ω + 1 = 0.
Hence ω, ω are roots of xk+1 − x + 1 and x2 − x + 1 divides xk+1 − x + 1. Similarly,
ωk+1 − 2ωk + ω + 1 = ω2 − 2ω + ω + 1 = 0 and the same holds for ω. We conclude that
x2 − x+ 1 divides xk+1 − 2xk + x+ 1.

Lemma 3.4. For any odd k ≥ 1 such that (k ≡ 5 mod 6), we have

x2 − x+ 1 | xk+1 − 2xk − 2x+ 1 . (3.4)

Proof (of Lemma 3.4). Let ω, ω ∈ C be the two primitive 6-th roots of unity that are
the two roots of x2 − x + 1. Similarly as in the proof of Lemma 3.3, since k ≡ 5 mod 6
and ω3 = −1, ω6 = 1, then ωk+1 = 1, ωk = ω5 = −ω2. Then ωk+1 − 2ωk − 2ω + 1 =

Table 3.9: Cofactors of Construction 6.6 families
k p(x) + 1− t(x) c0(x) gcd(c0(x), p(x)− 1) gcd(c0(x), y(x))

1 mod 6 (x2k − xk + 1)(x2 − x+ 1)/3 (x2 − x+ 1)2/3 x2 − x+ 1 (x2 − x+ 1)/3

2 mod 6 (xk − xk/2 + 1)(x2 + x+ 1)/3 (x2 + x+ 1)/3 1 1

3 mod 18 (x2k/3 − xk/3 + 1)(x2 − x+ 1)2/3 (x2 − x+ 1)2/3 1 1

9 mod 18 (x2k/3 − xk/3 + 1)(x2 − x+ 1)/3 (x2 − x+ 1)/3 1 1

15 mod 18 (x2k/3 − xk/3 + 1)(x2 − x+ 1)/3 (x2 − x+ 1)2/3 1 1

4 mod 6 (xk − xk/2 + 1)(x3 − 1)2/3 (x3 − 1)2/3 x3 − 1 (x3 − 1)/3
5 mod 6 (x2k − xk + 1)(x2 − x+ 1)/3 (x2 − x+ 1)2/3 x2 − x+ 1 (x2 − x+ 1)/3

0 mod 6 (xk/3 − xk/6 + 1)(x− 1)2/3 (x− 1)2/3 x− 1 (x− 1)/3
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1 − 2(−ω2) − 2ω + 1 = 2ω2 − 2ω + 2 = 0. The same holds for ω, and we conclude that
x2 − x+ 1 divides xk+1 − 2xk − 2x+ 1.

Proof (of Table 3.9). For k = 1 mod 6, one computes

p(x) + 1− t(x) =(x+ 1)2(x2k − xk + 1)/3− x2k+1 + 1− (−xk+1 + x+ 1)

=(x+ 1)2(x2k − xk + 1)/3− x(x2k − xk + 1)

=(x2k − xk + 1)(x2 − x+ 1)/3 .

By Lemma 3.2, (x2−x+1) divides x2k−xk+1 since k ≡ 1 mod 6. Note that for x ≡ 2 mod 3,
x2 − x+ 1 ≡ 0 mod 3. Hence the cofactor is a multiple of c0(x) = (x2 − x+ 1)2/3. Next,
one computes

p(x)− 1 = (x+ 1)2︸ ︷︷ ︸
=(x2−x+1)+3x

(x2k − xk + 1)/3− x2k+1 − 1

=(x2 − x+ 1)(x2k − xk + 1)/3 + x(x2k − xk + 1)− x2k+1 − 1

=(x2 − x+ 1)(x2k − xk + 1)/3− (xk+1 − x+ 1)

and by Lemma 3.3, x2−x+ 1 divides xk+1−x+ 1. We computed the derivative of p(x)−1
and checked that none of ω, ω is a zero of the derivative. Finally, x2−x+1 divides p(x)−1
with multiplicity one. To conclude, Lemma 3.3 ensures that (x2− x+ 1) divides y(x), and
we checked that the derivative of y(x) does not vanish at a primitive sixth root of unity,
hence x2 − x+ 1 divides y(x) with multiplicity one.

For k = 2 mod 6, one computes

p(x) + 1− t(x) =(x− 1)2(xk − xk/2 + 1)/3 + xk+1 + 1− (xk/2+1 − x+ 1)

=(x2 − 2x+ 1)(xk − xk/2 + 1)/3 + x(xk − (xk/2 + 1)

=(xk − xk/2 + 1)(x2 + x+ 1)/3

Note that k is even. Lemma 3.2 will apply for k′ = k/2 to be odd, that is k ≡ 2 mod 12.
Nevertheless the cofactor c0(x) will not be a square. We checked that none of the primitive
cubic and sextic roots of unity are roots of p(x)− 1 nor y(x), hence the gcd of c0(x) and
p(x)− 1, resp. y(x), is 1.

For k = 3 mod 18, it is straightforward to get p(x) + 1− t(x) = (x2 − x+ 1)2(x2k/3 −
xk/3 + 1)/3, the cofactor c0(x) = (x2 − x + 1)2/3 is a square as for k = 1 mod 6. For
k = 9, 15 mod 18, we compute

p(x) + 1− t(x) =(x+ 1)2(x2k/3 − xk/3 + 1)/3− x2k/3+1 + 1− (−xk/3+1 + x+ 1)

=(x2 + 2x+ 1)(x2k/3 − xk/3 + 1)/3− x(x2k/3 − xk/3 + 1)

=(x2 − x+ 1)(x2k/3 − xk/3 + 1)/3

For k = 9 mod 18, k/3 is a multiple of 3 and x2 − x+ 1 does not divide (x2k/3 − xk/3 + 1),
while for k = 15 mod 18, k/3 is co-prime to 6, and (x2k/3 − xk/3 + 1) is a multiple of
(x2 − x+ 1) by Lemma 3.2. For k ≡ 3, 9, 15 mod 18, we checked that neither p(x)− 1 nor
y(x) have a common factor with c0(x), and no faster co-factor clearing is available.

For k ≡ 4, 0 mod 6, the calculus is similar to the case k ≡ 1 mod 6, and for k ≡ 5 mod 6,
we use Lemma 3.4 to conclude about y(x).
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For the cases k ≡ 2 mod 6 and k ≡ 9 mod 18, c1(x) has no square factor and thus the
cofactor clearing is already optimised. For k ≡ 3, 15 mod 18, the cofactor is a square but
Theorem 3.1 does not apply. For all remaining cases, c1(x) = n(x)2/3 for some polynomial
factor n(x)/3 that satisfies Theorem 3.1. Hence, it is sufficient to multiply by n(x) to clear
the cofactor on Construction 6.6 curves. We summarize our results in Theorem 3.2.

Theorem 3.2. • For k ≡ 1, 5 mod 6, the curve cofactor has a factor c0(x) = (x2 −
x+ 1)2/3, whose structure is Z/(x2− x+ 1)/3Z×Z/(x2− x+ 1)Z, and it is enough
to multiply by n(x) to clear the co-factor c0(x).

• For k ≡ 4 mod 6, the curve cofactor has a factor c0(x) = (x3−1)2/3, whose structure
is Z/(x3 − 1)/3Z × Z/(x3 − 1)Z, and it is enough to multiply by n(x) to clear the
co-factor c0(x).

• For k ≡ 0 mod 6, the curve cofactor has a factor c0(x) = (x−1)2/3, whose structure
is Z/(x − 1)/3Z × Z/(x − 1)Z, and it is enough to multiply by n(x) to clear the
co-factor c0(x).

Proof (of Th. 3.2). From Table 3.9, k = 1, 5 mod 6 has n(x) = (x2−x+1)/3, k = 4 mod 6
has n(x) = (x3 − 1)/3, k = 0 mod 6 has n(x) = (x − 1)/3 where n(x) satisfies the
conditions of Th. 3.1. The n-torsion is Fp-rational, that is E[n] ⊂ E(Fp) and has structure
Z/nZ× Z/nZ over Fp. Taking into account the co-factor 3, the structure of the subgroup
of order c0(x) = 3n2(x) is Z/3nZ×Z/nZ and multiplying by 3n(x) clears the cofactor.

Example 3.1. In [CDS20], Clarisse, Duquesne and Sanders introduced two new pairing-
friendly curves with optimal G1, the curves BW13-P310 with seed u = −0x8b0 and BW19-
P286 with seed v = −0x91. They fall in Construction 6.6 with k = 1 mod 6. Our faster
co-factor clearing method applies.

For BW13-P310, the prime subgroup order is r = Φ6·13(u) = (u26−u13 +1)/(u2−u+1).
The cofactor is (u2 − u + 1)2/3, where (u2 − u + 1) divides p(u) − 1 and (u2 − u + 1)/3
divides y(u). It is enough to multiply by (u2 − u+ 1) to clear the cofactor.

For BW19-P286, the prime subgroup order is r = Φ6·19(v) = (v38−v19 +1)/(v2−v+1).
The cofactor is (v2 − v + 1)2/3, where (v2 − v + 1) divides p(v) − 1 and (v2 − v + 1)/3
divides y(v). It is enough to multiply by (v2 − v + 1) to clear the cofactor.

Subgroup Security, Distortion Map. Theorem 3.1 applied to BLS curves tells us
that the curve endomorphism φ : E → E, (x, y) 7→ (ωx, y) with ω ∈ Fp a primitive third
root of unity (ω2 + ω + 1 = 0 mod p) acts as a distortion map on E[n] ' Z/nZ⊕ Z/nZ.
With a Weil pairing eW , one can embed a discrete logarithm on E(Fp)[n] into F∗p, where
sub-exponential DL computation takes place, although the much larger size of p compared
to n seems prohibitive. For G,P ∈ E[n] in the same subgroup of order n, logG(P ) =
logeW (G,φ(G)) eW (P, φ(G)).

The definition of subgroup security in [BCM+15] is the following.

Definition 3.1 (Subgroup Security, [BCM+15, Definition 1]). Let p(u), t(u), r(u) ∈ Q[u]
parameterize a family of ordinary pairing-friendly elliptic curves, and for any particular
u0 ∈ Z such that p = p(u0) and r = r(u0) are prime, let E be the resulting pairing-friendly
elliptic curve over Fp of order divisible by r. Let h1 = #E(Fp)/r, h2 = #E ′(Fpk/d)/r
and hT = Φk(p)/r. We say that E is subgroup-secure if all Q[u]-irreducible factors of
h1(u), h2(u) and hT (u) that can represent primes and that have degree at least that of r(u),
contain no prime factors smaller than r(u0) ∈ Z when evaluated at u = u0.
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If c0 = (x−1)/3 is prime, since the structure of the subgroup of order c2
0 is Z/c0Z⊕Z/c0Z,

and the subgroup is fully defined over the prime field Fp, one can find a basis 〈P1, P2〉 so
that P1, P2 are of order c0 and linearly independent. Moreover there exists a distortion map
ψ from the subgroup 〈P1〉 to 〈P2〉. The distortion map ψ is given by (x, y) 7→ (ωx, y) where
ω ∈ Fp is such that ω2 +ω+ 1 = 0. (See [Cha06] on distortion maps on embedding degree
1 curves). Because of this distortion map, one can transfer as in the MOV attack a discrete
logarithm computation in the subgroup of order (x−1)/3 of E(Fp) to a discrete logarithm
computation in the subgroup of order (x − 1)/3 of Fp (note that this is the base field
Fp, not the extension field Fpk), where sub-exponential DL computation takes place. The
DL computation in Fp has complexity exp

(
(1 + o(1))

√
ln p ln ln p

)
with the quadratic

sieve, and exp
(

(1.923 + o(1)) 3
√

ln p(ln ln p)2
)

with the number field sieve. Because the
complexity is in p not c0, the computation will be slower, nevertheless it exists. In practice,
if an implementation of a generic DL computation algorithm like Pollard-ρ is faster in Fp
than on E(Fp) for the subgroup of order (x−1)/3, it is possible to transfer the computation
from the curve to the finite field thanks to the distortion map and a Weil pairing.

Constructions 6.2, 6.3, 6.4, and 6.5 with D = 1

The constructions with numbers 6.2 to 6.5 have discriminant D = 1, we report the
polynomial forms of the parameters in Table 3.10. The cofactor c1(x) in p(x) + 1− t(x) =
r(x)c1(x) has always a factor c0(x) that we report in Table 3.11, with special cases for
k = 2 and k = 4. For p(x) to be an integer, x ≡ 1 mod 2 is required, except for 6.5 where
x is required to be even.

Table 3.10: Constructions 6.2, 6.3, 6.4, and 6.5 from [FST10, §6]
k r(x) t(x) y(x) p(x)

6.2 1 mod 2 Φ4k(x) −x2 + 1 xk(x2 + 1) (x2k+4 + 2x2k+2 + x2k + x4 − 2x2 + 1)/4

6.3 2 mod 4 Φ2k(x) x2 + 1 xk/2(x2 − 1) (xk+4 − 2xk+2 + xk + x4 + 2x2 + 1)/4

6.4 4 mod 8 Φk(x) x+ 1 xk/4(x− 1) (xk/2+2 − 2xk/2+1 + xk/2 + x2 + 2x+ 1)/4
6.5 k = 10 Φ20(x) −x6 + x4 − x2 + 2 x3(x2 − 1) (x12 − x10 + x8 − 5x6 + 5x4 − 4x2 + 4)/4

Table 3.11: Cofactors of Constructions 6.2, 6.3, 6.4, and 6.5. Note that x ≡ 1 mod 2 except
for 6.5 where x ≡ 0 mod 2.

k c0(x) gcd(c0(x), p(x)− 1) gcd(c0(x), y(x))
6.2 1 mod 2 (x2 + 1)3/4 x2 + 1 x2 + 1
6.3 k = 2 (x2 − 1)2/2 x2 − 1 x2 − 1
6.3 2 mod 4, k > 2 (x2 − 1)2(x2 + 1)/4 x2 − 1 x2 − 1
6.4 k = 4 (x− 1)2/2 x− 1 x− 1
6.4 4 mod 8, k > 4 (x− 1)2(x2 + 1)/4 x− 1 x− 1
6.5 k = 10 x4/4 x2 x3

Lemma 3.5. For any odd k ≥ 1 we have

x2 + 1 | x2k + 1 . (3.5)

Explicitly,

x2k + 1 = (x2 + 1)(1− x2 + x4 − . . .+ . . .− x2k−4 + x2k−2) . (3.6)
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Proof. By Lemma 3.1, x4k − 1 is a multiple of Φ1 = x− 1, Φ2 = x + 1 and Φ4 = x2 + 1.
Since x4k − 1 = (x2k − 1)(x2k + 1) and Φ1Φ2 | x2k − 1 but Φ4 - x2k − 1 because k is odd,
then Φ4 = x2 + 1 should divide the other term x2k + 1.

Proof (of Table 3.11). All families of constructions 6.2 to 6.5 have j-invariant 1728, an a
point of order 2 (their order is even).

In Construction 6.2 one has k odd. One gets p(x) + 1 − t(x) = (x2 + 1)2(x2k + 1)/4,
and by Lemma 3.5, x2 + 1 is a factor of x2k + 1, hence c0(x) = (x2 + 1)3/4 which is even,
divides p(x) + 1− t(x). The factorization of p(x)− 1 is

p(x)− 1 =(x2k(x2 + 1)2 + (x2 − 1)2)/4− 1

=((x4 + 2x2 + 1)x2k + (x4 − 2x2 + 1)− 4)/4

=((x4 − 1)x2k + (2x2 + 2)x2k + (x4 − 1)− 2x2 − 2)/4

=((x4 − 1)(x2k + 1) + 2(x2 + 1)(x2k − 1))/4

=(x4 − 1)(x2k + 1 + 2a(x))/4 where

a(x) =(x2k − 1)/(x2 − 1) = 1 + x2 + x4 + . . .+ x2k−2 =
k−1∑
i=0

x2i

and by Lemma 3.1, x2k− 1 is a multiple of x2− 1 = Φ1Φ2, and (x4− 1)/2 divides p(x)− 1.
More precisely, because x is odd, 4 | p(x)− 1, and

p(x)− 1 = 2 (x2 + 1)︸ ︷︷ ︸
even

(x2 − 1)/4︸ ︷︷ ︸
∈Z

(x2k + 1 + 2a(x))/2︸ ︷︷ ︸
∈Z

.

As a consequence, x2 + 1 divides p(x)− 1. Finally, y(x) = xk(x2 + 1) is a multiple of x2 + 1.
We isolate the case k = 2 in Construction 6.3, with parameters r(x) = Φ4(x) = x2 + 1

(even), t(x) = x2 +1, y(x) = x(x2−1), p(x) = (x6−x4 +3x2 +1)/4, p(x)+1− t(x) = (x2 +
1)(x2−1)2/4. We set r(x) = (x2+1)/2 and c1(x) = (x2−1)2/2, p(x)−1 = (x2−1)(x4+3)/4
where (x4 + 3)/4 is an integer. For larger k = 2 mod 4, one has

p(x) + 1− t(x) =(xk+4 − 2xk+2 + xk + x4 + 2x2 + 1)/4 + 1− (x2 + 1)

=(xk(x2 − 1)2 + (x2 + 1)2 − 4x2)/4

=(xk + 1)(x2 − 1)2/4

and since k is even, by Lemma 3.5, x2 + 1 divides xk + 1, hence c0(x) = (x2 + 1)(x2− 1)2/4
divides the curve order. We compute p(x)− 1 and factor it:

p(x)− 1 =(xk(x2 − 1)2 + (x2 + 1)2)/4− 1

=(xk(x2 − 1)2 + (x2 − 1)2 + 4x2 − 4)/4

=(x2 − 1)(xk (x2 − 1)︸ ︷︷ ︸
mult. of 4

+ x2 − 1︸ ︷︷ ︸
mult. of 4

+4)/4

which proves that x2 − 1 divides p(x)− 1. Because y(x) = xk/2(x2 − 1), it is obvious that
x2 − 1 divides y(x).

With Construction 6.4, k = 4 mod 8. First k = 4 is a special case where the curve order
is p(x)+1− t(x) = (x−1)2(x2 +1)/4, the cofactor is c0(x) = (x−1)2/2, r(x) = (x2 +1)/2,
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p(x)− 1 = (x2 − 1)(x2 − 2x+ 3)/4 factors as p(x)− 1 = (x− 1)(x+ 1)/2(x2 − 2x+ 3)/2,
and y(x) = x(x− 1).

For larger k, we compute, with p(x) = (xk/2(x− 1)2 + (x+ 1)2)/4,

p(x) + 1− t(x) =(xk/2(x− 1)2 + (x+ 1)2)/4 + 1− (x+ 1)

=(xk/2(x− 1)2 + x2 + 2x+ 1− 4x)/4

=(xk/2(x− 1)2 + (x− 1)2)/4

=(x− 1)2(xk/2 + 1)/4

and because k ≡ 4 mod 8, k/2 is even and by Lemma 3.5, x2 + 1 divides xk/2 + 1, hence
c0(x) = (x− 1)2(x2 + 1)/4 divides the curve order. Now we compute p(x)− 1 and obtain
the factorisation

p(x)− 1 =(xk/2(x− 1)2 + (x+ 1)2)/4− 1

=(xk/2(x− 1)2 + x2 − 2x+ 1 + 4x− 4)/4

=(xk/2(x− 1)2 + (x− 1)2 + 4(x− 1))/4

=(x− 1)(xk/2(x− 1) + (x− 1) + 4)/4

=(x− 1)((xk/2 + 1)(x− 1)︸ ︷︷ ︸
mult. of 4

+4)/4

hence x− 1 divides p(x)− 1. Finally y(x) = xk/4(x− 1) and (x− 1) divides y(x).
For construction 6.5, x is even this time, the curve order is p(x) + 1− t(x) = x4/4(x8−

x6 + x4 − x2 + 1), y(x) = x3(x2 − 1), p(x)− 1 = x2(x10 − x8 + x6 − 5x4 + 5x2 − 4)/4 were
the factor (x10 − x8 + x6 − 5x4 + 5x2 − 4)/4 is an integer whenever x is even.

From Table 3.11 and Theorem 3.1, we obtain Theorem 3.3.

Theorem 3.3. • For construction 6.2, the curve cofactor has a factor c0(x) = (x2 +
1)3/4, whose structure is Z/(x2+1)/2Z×Z/(x2+1)2/2Z, and it is enough to multiply
by n(x) to clear the co-factor c0(x).

• For construction 6.3, the curve cofactor has a factor c0(x) = (x2 − 1)2(x2 + 1)/4,
whose structure is Z/(x2 − 1)/2Z × Z/((x2 − 1)(x2 + 1)/2Z, and it is enough to
multiply by n(x) to clear the co-factor c0(x).

• For construction 6.4, the curve cofactor has a factor c0(x) = (x − 1)2(x2 + 1)/4,
whose structure is Z/(x−1)/2Z×Z/(x−1)(x2 + 1)/2Z, and it is enough to multiply
by n(x) to clear the co-factor c0(x).

• For construction 6.5, the curve order has cofactor c0(x) = x4/4, whose structure is
Z/x2/2Z× Z/x2/2Z, and it is enough to multiply by n(x) to clear the cofactor.

Construction 6.7 with D = 2

Construction 6.7 in [FST10] has discriminant D = 2. We report the polynomial forms
of the parameters in Table 3.12. The cofactor c1(x) in p(x) + 1 − t(x) = r(x)c1(x) has
always a factor c0(x) that we report in Table 3.13. For p(x) to be an integer, x ≡ 1 mod 2
is required, and x ≡ 1 mod 4 for k ≡ 0 mod 24.
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Table 3.12: Construction 6.7 from [FST10, §6].
6.7, k = 0 mod 3, ` = lcm(8, k)

r(x) = Φ`(x)

t(x) = x`/k + 1

y(x) = (1− x`/k)(x5`/24 + x`/8 − x`/24)/2

p(x) = (2(x`/k + 1)2 + (1− x`/k)2(x5`/24 + x`/8 − x`/24)2)/8

Table 3.13: Cofactor of Construction 6.7. Note that x ≡ 1 mod 2, except for k ≡ 0 mod 24,
where x ≡ 1 mod 4.

k c0(x) gcd(c0(x), p(x)− 1) gcd(c0(x), y(x))

6.7 0 mod 3 (x`/k − 1)2/8 (x`/k − 1)/2 (x`/k − 1)/2

Proof (of Table 3.13). We compute

p(x) + 1− t(x) =(2(x`/k + 1)2 + (1− x`/k)2(x5`/24 + x`/8 − x`/24)2)/8 + 1− (x`/k + 1)

=(2(x`/k + 1)2 − 8x`/k + (1− x`/k)2(x`/24(x4`/24 + x2`/24 − 1))2)/8

=(2(x`/k − 1)2 + (x`/k − 1)2x`/12(x`/6 + x`/12 − 1)2)/8

=(x`/k − 1)2(x`/12(x`/6 + x`/12 − 1)2 + 2)/8

and for p(x)− 1 we obtain

p(x)− 1 =(2(x`/k + 1)2 − 8 + (x`/k − 1)2(x`/12(x`/6 + x`/12 − 1)2))/8

p(x)− 1 =(2(x`/k − 1)2 + 8x`/k − 8 + (x`/k − 1)2(x`/12(x`/6 + x`/12 − 1)2))/8

p(x)− 1 =(x`/k − 1)(8 + (x`/k − 1)(2 + x`/12(x`/6 + x`/12 − 1)2)/8

It is straightforward to see that (x`/k − 1)/2 divides y(x).

From Table 3.13 and Theorem 3.1, we obtain Theorem 3.4.

Theorem 3.4. For construction 6.7, let ` = lcm(k, 8). The curve cofactor has a factor
c0(x) = (x`/k − 1)2/8, whose structure is Z/(x`/k − 1)/4Z × Z/(x`/k − 1)/2Z, and it is
enough to multiply by n(x) = (x`/k − 1)/2 to clear the co-factor c0(x).

Other constructions

We also investigated the KSS curves named Constructions 6.11, 6.12, 6.13, 6.14, 6.15
in [FST10], and the KSS-54 curve of 2018, but none of the cofactors is a square, and the
gcd of the cofactor and p(x)−1, resp. y(x), is equal to 1. Hence our faster co-factor clearing
does not apply. We also briefly looked into the Aurifeuillean construction [SG18] for which
it dos not apply neither.

3.2.2 Faster subgroup membership testing

For completeness, we first state the previously known membership tests for G1 [Sco21,
Bow19]. Then we show our results for GT [EHG22]. Next, we show that the proof argument
for the G2 test in [Sco21] is incomplete and provide a fix and a generalization for both G1

and G2.
For the sequel, we recall that the curves of interest have a j-invariant 0 and are equipped

with efficient endomorphisms φ on G1 and ψ on G2 (cf. Sec. 1.2).
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G1 membership testing

Given a point P ∈ E(Fp), Scott [Sco21, §6] proves by contradiction that for BLS12
curves it is sufficient to verify that φ(P ) = −u2P where −u2 is the eigenvalue λ of φ. A
similar test was already proposed in a preprint by Bowe [Bow19, §3.2] for the BLS12-381:
((u2 − 1)/3)(2φ′(P ) − P − φ′2(P )) − φ′2(P ) = O (where φ′ here is φ2). This boils down
to exactly φ(P ) = −u2P using φ2(P ) + φ(P ) + P = O and λ2 + λ + 1 ≡ 0 mod r
(u4 ≡ u2 − 1 mod r). However, the proof uses a tautological reasoning, as reproached by
Scott [Sco21, footnote p. 6], because it replaces λP by φ(P ) where P is a point yet to be
proven of order r.

GT membership testing

Testing membership in GT for candidate elements z of Fpk is done in two steps. First, one
checks that z belongs to the cyclotomic subgroup of Fpk (subgroup of order Φk(p)), that
is zΦk(p) = 1. To avoid inversions, one multiplies the positive terms in pi on one hand,
and the negative terms on the other hand, and check for equality: it costs only Frobenius
powers. With k = 6 and Φ6(p) = p2− p+ 1, it means checking that zp

2+1 = zp. Second, we
propose to use a generalisation of Scott’s technique first developed for BN curves, where
r = p+1−t [Sco13, §8.3]. In the BN case, the computation of zr is replaced by a Frobenius
power zp and an exponentiation zt−1, and the test zp = zt−1. BLS curves are not of prime
order, and we use Proposition 3.1.

Proposition 3.1. Let E be a pairing-friendly curve defined over Fp, of embedding degree
k w.r.t. the subgroup order r, and order #E(Fp) = r · c = p+ 1− t. For z ∈ F∗pk , we have
this alternative GT membership testing:

zΦk(p) = 1 and zp = zt−1 and gcd(p+ 1− t,Φk(p)) = r =⇒ zr = 1 .

Proof. If zΦk(p) = 1 and zp+1−t = 1, then the order of z divides the gcd of the exponents
gcd(Φk(p), p+ 1− t). If this gcd is exactly r, then z is in the subgroup of order r, that is
zr = 1.

For example, BLS curves have c · r = p+ 1− t = p− u hence

p ≡ u mod r .

As soon as gcd(p+ 1− t,Φk(p)) = r, then the following two tests are enough:

1. test if zΦk(p) = 1 with Frobenius maps;

2. test if zp = zu, using cyclotomic squarings [GS10] for a faster exponentiation.

Remark 3.1. For BLS-curves of embedding degree k a power of 3 (k = 3j), the cyclotomic
polynomial Φk(x) does not generate primes, actually one has r(x) = Φk(x)/3. Moreover a
BLS curve has points of order 3, hence gcd(p+ 1− t,Φk(p)) = 3r for all k = 3j.
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G2 membership

Following [Sco21, Section 4], let E(Fp) be an elliptic curve of j-invariant 0 and embedding
degree k = 12. Let E ′ be the sextic twist of E defined over Fpk/d = Fp2 , and ψ the
“untwist-Frobenius-twist” endomorphism with the minimal polynomial

χ(X) = X2 − tX + p . (3.7)

Let Q ∈ E ′(Fp2). We have gcd(p+ 1− t,#E ′(Fp2)) = r. To check if Q is in E ′(Fp2)[r], it
is therefore sufficient to verify that

[p+ 1− t]Q = O .

Since [p] = −ψ2 + [t] ◦ ψ from Eq. (3.7), the test to perform becomes

ψ ◦ ([t]Q− ψ(Q)) +Q− [t]Q = 0 . (3.8)

It is an efficient test since ψ is fast to evaluate and [t]Q can be computed once and cheaper
than [r]Q. For BLS12 curves t = u+1 and the test to perform becomes in [Sco21, Section 4]
the quadratic equation

ψ(uQ) + ψ(Q)− ψ2(Q) = uQ .

So far, the only used fact is χ(ψ) = 0, which is true everywhere. So the reasoning is correct
and we have

ψ(uQ) + ψ(Q)− ψ2(Q) = uQ =⇒ Q ∈ E ′(Fp2)[r] .

However the preprint [Sco21, Section 4] goes further and writes that the quadratic equation
has only two solutions, ψ(Q) = Q and ψ(Q) = uQ. Since ψ does not act trivially on E ′(Fp2)
the conclusion is

ψ(Q) = uQ =⇒ Q ∈ E ′(Fp2)[r] . (3.9)

The issue. The previous property is, by luck, true as we will show later (Example 3.3).
However, the overall reasoning is flawed, because it circles back to the fact that ψ acts as
the multiplication by u on G2, while we are trying to prove that Q is in G2. This is the
same kind of tautological reasoning reproached in the footnote of Scott’s preprint [Sco21].
This reasoning implicitly supposes ψ acts as the multiplication by u only on E ′(Fp2)[r],
and therefore that this action characterizes E ′(Fp2)[r]. However, E ′(Fp2)[r] might not be
the only subgroup of E ′(Fp2) on which ψ has the eigenvalue u. Indeed, if a prime number
` divides the cofactor c2 and χ(u) = 0 mod `, it is possible that, on E ′(Fp2)[`], ψ acts as
the multiplication by u, for instance if E ′(Fp2)[`] contains the eigenspace associated to u.
So the implication (3.9) is true, provided that no such prime exists.

The solution. The implication (3.9) becomes true if we know that there is no other
subgroup of E ′(Fp2) on which ψ acts as the multiplication by u. To make sure of this, it
is enough to check that χ(u) 6= 0 mod `i for all primes `i dividing c2. If that is the case,
we know that ψ acts as the multiplication by u only on E ′(Fp2)[r]. Using the Chinese
Remainder Theorem it gives the following criterion:

Proposition 3.2. If ψ acts as the multiplication by u on E ′(Fp2)[r] and gcd(χ(u), c2) = 1
then

ψ(Q) = [u]Q =⇒ Q ∈ E ′(Fp2)[r] .
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Note that checking the gcd of the polynomials χ(λ(X)) and c2(X) is not sufficient and
one needs to check the gcd of the integers, that are evaluations of the polynomials at u. In
fact, gcd(χ(λ(X)), c2(X)) = 1 in Q[X] only means that there is a relation Aχ(λ)+Bc2 = 1
where A,B ∈ Q[X]. The seeds u are chosen so that χ(λ(u)), c2(u) are integers, but it might
not be the case for A(u) and B(u). If d is the common denominator of the coefficients of
A and B, we can only say that for a given seed u, gcd(χ(u), c2(u)) | d. Therefore, we have
to take care of the “exceptional seeds” u such that gcd(χ(u), c2(u)) is a proper divisor of d.

A generalisation of G1 and G2 membership tests

Proposition 3.2 can be generalized to both G1 and G2 groups for any polynomial-based
family of elliptic curves (e.g. BLS, BN, KSS). Let Ẽ(Fp̃) be a family of elliptic curves
(i.e. it can be E(Fp) or E ′(Fpk/d) for instance). Let G be a cryptographic group of Ẽ of
order r equipped with an efficient endomorphism φ̃. It has a minimal polynomial χ̃ and
an eigenvalue λ̃. Let c be the cofactor of G. Proposition 3.2 becomes then

Proposition 3.3. If φ̃ acts as the multiplication by λ̃ on Ẽ(Fp̃)[r] and gcd(χ̃(λ̃), c) = 1
then

φ̃(Q) = [λ̃]Q =⇒ Q ∈ Ẽ(Fp̃)[r] .

Example 3.2 (BN). Let E(Fp(x)) define the BN pairing-friendly family. It is parameterized
by

p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1

r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1

t(x) = 6x2 + 1

and E(Fp(x)) has a prime order so c1 = 1. The cofactor on the sextic twist E ′(Fp2) is c = c2

c2(x) = p(x)− 1 + t(x)

= 36x4 + 36x3 + 30x2 + 6x+ 1 .

On G = G2 = E ′(Fp2)[r], φ̃ = ψ (the “untwist-Frobenius-twist”) has a minimal polynomial
χ̃ = χ and an eigenvalue λ̃ = λ

χ = X2 − tX + p

λ = 6X2 .

We have gcd(c2, χ(λ)) = gcd(c2(X), χ(6X2)) = 1, and running the extended Euclidean
algorithm we find a relation Ac2 + Bχ(λ) = 1 where A,B ∈ Q[X]. The common denom-
inator of the coefficients of A and B is d = 2. We now look at the congruence relations
the seed u should satisfy so that χ(λ(u)) and c2(u) are both divisible by 2: those will be the
exceptional seeds, under which the implication (3.9) could be false. Since c2 is always odd
there is no exceptional seeds and we obtain:

Proposition 3.4. For the BN family, if Q ∈ E ′(Fp2),

ψ(Q) = [u]Q =⇒ Q ∈ E ′(Fp2)[r] .
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Example 3.3 (BLS12). The BLS12 parameters are:

p(x) = (x− 1)2/3 · r(x) + x

r(x) = x4 − x2 + 1

t(x) = x+ 1 .

On G = G1 = E(Fp)[r], the endomorphism φ̃ = φ has minimal polynomial χ̃ = χ and
eigenvalue λ̃ = λ as follows:

χ = X2 +X + 1

λ = −X2 .

We have c = c1 = (X − 1)2/3. Running the extended Euclidean algorithm on c1 and χ(λ),
we find a relation Ac1 +Bχ(λ) = 1 in Q[X]. In fact, here A and B are in Z[X], so there
are no exceptional cases: for any acceptable seed u, gcd(c1(u), χ(λ(u))) = 1, so we retrieve
the result from Scott’s paper [Sco21]:

Proposition 3.5. For the BLS12 family, if Q ∈ E(Fp),

φ(Q) = [−u2]Q =⇒ Q ∈ E(Fp)[r] .

On G = G2 = E ′(Fp2)[r], φ̃ = ψ (the “untwist-Frobenius-twist”) has a minimal polyno-
mial χ̃ = χ and an eigenvalue λ̃, where

χ = X2 − tX + p

λ = X .

The G2 cofactor is c = c2

c2(x) = (x8 − 4x7 + 5x6 − 4x4 + 6x3 − 4x2 − 4x+ 13)/9 .

We have gcd(c2, χ(λ)) = 1 and running the extended Euclidean algorithm we find a relation
Ac2 +Bχ(λ) = 1 where A,B ∈ Q[X]. The common denominator of the coefficients of A
and B is 3 · 181. We look at what congruence properties the seed u should have so that
χ(λ(u)) and c2(u) are both divisible by 181 or 3 to rule out the exceptional cases (as before,
with those seeds, the implication (3.9) could be false). We find that there is no seed u such
that 3 | c2(u). Furthermore, the seeds u such that 181 | χ(λ(u)) and 181 | c2(u) are such
that u ≡ 7 mod 181 and in that case, 181 | r(u). Therefore there are no exceptional cases
as long as r is prime, and we obtain:

Proposition 3.6. For the BLS12 family, if r = r(u) is prime and Q ∈ E ′(Fp2),

ψ(Q) = [u]Q =⇒ Q ∈ E ′(Fp2)[r] .

Example 3.4 (BLS24). The BLS24 family is parameterized by

p(x) = (x− 1)2/3 · r(x) + x

r(x) = x8 − x4 + 1

t(x) = x+ 1 .
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On G = G1 = E(Fp)[r], the endomorphism φ̃ = φ has minimal polynomial χ̃ = χ and
eigenvalue λ̃ = λ, where

χ = X2 +X + 1

λ = −X4 .

We have c = c1 = (X − 1)2/3. Running the extended Euclidean algorithm on c1 and χ(λ),
we find a relation Ac1 + Bχ(λ) = 1 in Q[X]. As for BLS12, A and B are in Z[X], so
there are no exceptional cases, and we have

Proposition 3.7. For the BLS24 family, if Q ∈ E(Fp),

φ(Q) = [−u4]Q =⇒ Q ∈ E(Fp)[r] .

On G = G2 = E ′(Fp4)[r], φ̃ = ψ, the “untwist-Frobenius-twist” has a minimal polyno-
mial χ̃ = χ and an eigenvalue λ̃ = λ, where

χ = X2 − tX + p

λ = X .

The cofactor on the sextic twist E ′(Fp4) is c = c2

c2(x) =(x32 − 8x31 + 28x30 − 56x29 + 67x28 − 32x27 − 56x26 + 160x25 − 203x24 + 132x23

+ 12x22 − 132x21 + 170x20 − 124x19 + 44x18 − 4x17 + 2x16 + 20x15 − 46x14 + 20x13

+ 5x12 + 24x11 − 42x10 + 48x9 − 101x8 + 100x7 + 70x6 − 128x5 + 70x4 − 56x3

− 44x2 + 40x+ 100)/81 .

We have gcd(c2, χ(λ)) = 1. Running the extended Euclidean algorithm on c2 and χ(λ), we
find a relation Ac2 + Bχ(λ) = 1 where the common denominator of the coefficients of
A and B is 35 × 1038721. As before, we find that there is no seed u such that 3 | c2(u).
Moreover, the seeds u such that 1038721 | c2(u) and 1038721 | χ(λ) are such that u =
162316 mod 1038721. In this case 1038721 | r(u) and hence there are no exceptional cases.
We obtain:

Proposition 3.8. For the BLS24 family, if r = r(u) is prime and Q ∈ E ′(Fp4), then

ψ(Q) = [u]Q =⇒ Q ∈ E ′(Fp4)[r] .

Example 3.5 (BLS48). The BLS48 family is parametrized by

p(x) = (x− 1)2/3 · r(x) + x

r(x) = x16 − x8 + 1

t(x) = x+ 1 .

On G = G1 = E(Fp)[r], the endomorphism φ̃ = φ has minimal polynomial χ̃ = χ and
eigenvalue λ̃ = λ, where

χ = X2 +X + 1

λ = −X8 .

We have c = c1 = (X − 1)2/3. Running the extended Euclidean algorithm on c1 and χ(λ),
we find a relation Ac1 +Bχ(λ) = 1 in Q[X]. As for BLS12 and BLS24, A and B are in
Z[X], so there are no exceptional cases, and we have
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Proposition 3.9. For the BLS48 family, if Q ∈ E(Fp),

φ(Q) = [−u8]Q =⇒ Q ∈ E(Fp)[r] .

On G = G2 = E ′(Fp8)[r], φ̃ = ψ, the “untwist-Frobenius-twist” has a minimal polyno-
mial χ̃ = χ and an eigenvalue λ̃ = λ, where

χ = X2 − tX + p

λ = X .

The cofactor on the sextic twist E ′(Fp8) is c = c2 = (p8(x) + 1− (3y8(x) + t8(x))/2)/r(x)

c2(x) = (x128 − 16x127 + 120x126 − 560x125 + · · ·+ 6481)/6561 .

We have gcd(c2, χ(λ)) = 1. Running the extended Euclidean algorithm on c2 and χ(λ), we
find a relation Ac2 + Bχ(λ) = 1 where the common denominator of the coefficients of
A and B is 1153 × 4726299241057. We now look at the congruence relations the seed u
should satisfy so that χ(λ(u)) and c2(u) are both divisible either by 1153 or 4726299241057:
Those will be the exceptional seeds, under which the implication (3.9) could be false. We
note Upi the set of values of u mod pi such that χ(λ)(x) = 0 mod pi and similarly Vpi the
set of values of u mod pi such that c2(u) = 0 mod pi.

pi = 1153 : U1153 ∩ V1153 = {1135}
pi = 4726299241057 : U4726299241057 ∩ V4726299241057 = {2085225345771}

For the exceptional seeds u ≡ 1135 mod 1153 and u ≡ 2085225345771 mod 4726299241057,
we need to check that gcd(χ(λ)(u), c2(u)) = 1 over the integer instances (i.e. for the concrete
values of x). However, in both cases r is not a prime. So we have

Proposition 3.10. For the BLS48 family, if r = r(u) is prime and Q ∈ E ′(Fp8),

ψ(Q) = [u]Q =⇒ Q ∈ E ′(Fp8)[r] .





Chapter

4
Families of SNARK-friendly 2-cycles and

2-chains

In this chapter we focus on the construction of families of cycles and chains of SNARK-
friendly elliptic curves for recursive proof systems. First, we present results from the
literature on cycles of pairing-friendly, plain and hybrid curves before presenting our
results on families of 2-chains and their arithmetic. This chapter, in part, is a reprint of
the material as it appears in our published works [AEHG22] and [EHG22].

4.1 Cycles of pairing-friendly elliptic curves

A cycle of elliptic curves is a list of curves defined over finite fields in which the number
of points in one curve is equal to the size of the field of definition of the next curve, in a
cyclic manner.

Definition 4.1. An m-cycle of elliptic curves is a list of m distinct elliptic curves

E1/Fp1 , . . . , Em/Fpm ,

for primes p1, . . . , pm, such that the numbers of points on these curves satisfy

#E1(Fp1) = p2, . . . ,#Ei(Fpi) = pi+1, . . . ,#Em(Fpm) = p1.

This notion was initially introduced under different names, for example amicable pairs
(or equivalently dual elliptic primes [Mih07b]) for 2-cycles of ordinary curves, and aliquot
cycles for the general case [SS11]. A pairing-friendly m-cycle is an m-cycle composed of
ordinary pairing-friendly curves.

The state of the art.

Chiesa, Chu and Weidner studied the existence of pairing-friendly cycles, beyond the
previously known cycles of curves with embedding degrees 4 and 6, and arrived at a

Part II - SNARK-friendly elliptic curves 55



56 Part II - SNARK-friendly elliptic curves

number of negative results which indicate that having a small embedding degree is a
strong restriction on constructing cycles [CCW19]:

• There are no 2-cycles of elliptic curves with embedding degrees (5, 10), (8, 8) or
(12, 12), which means that there are no optimal (in terms of parameter sizes) pairing-
friendly 2-cycles at the 128-bit security level.

• There are no pairing-friendly cycles with more than 2 curves with the same CM
discriminant D > 3, which implies that elliptic curves from families of varying
discriminants must be used to construct cycles.

• There are no cycles of prime-order pairing-friendly curves only from the Freeman and
Barreto-Naehrig families; or cycles of composite-order elliptic curves. This motivates
the search for new constructions of prime-order pairing-friendly curves.

On the positive side, the authors characterize all cycles of MNT curves as consisting
of curves with alternating embedding degrees of 4 or 6, and construct a new 4-cycle of
MNT curves which consists of the union of 2-cycles. Table 4.1 collects the possibilities
to generate MNT cycles, for which a specific cycle can be generated by substituting the
possible choices of parameter x and checking that all polynomials p(x) and r(x) evaluate
to prime numbers. Concrete parameters used in practice can be found in Table 3.3.

Open problems.

The above restrictions and current constructions of cycles suggest that pairing-friendly
2-cycles will always have the inconvenience of including two elliptic curves at different
security levels, which means that at least one curve would have sub-optimal performance,
but there are several open problems for which a satisfying solution would potentially
increase the available options:

• Are there cycles of elliptic curves with the same embedding degree, and possibly the
same discriminant?

• Are there pairing-friendly cycles of embedding degrees greater than 6?

• Are there pairing-friendly cycles combining MNT, Freeman and Barreto-Naehrig
curves?

(6,4,6,4) 4-cycle
(6,4) 2-cycle (6,4) 2-cycle

E1 E2 E3 E4

k 6 4 6 4
p(x) 4x2 + 1 4x2 + 2x+ 1 4x2 + 1 4x2 − 2x+ 1
r(x) 4x2 + 2x+ 1 4x2 + 1 4x2 − 2x+ 1 4x2 + 1
t(x) −2x+ 1 2x+ 1 2x+ 1 −2x+ 1

Table 4.1: Parameterized (6,4) 2-cycles and (6,4,6,4) 4-cycles of MNT curves, where 4-cycles
are constructed as the union of the 2-cycles.

We already know that optimal 2-cycles for recursive SNARKs cannot be found, but it is
possible that better alternatives with higher embedding degrees and smaller parameter sizes
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than the inefficient MNT (6,4)-cycles exist. However, reconciling the conditions for pairing-
friendly cycles (prime order, varying families and discriminants) with the requirements
for SNARK-friendliness to construct efficient recursive SNARKs, i.e. conditions (i)–(v)
(cf. page 32), further restricts the choice of parameters and increase the challenge. Since
no methods are known to find prime-order pairing-friendly curves with embedding degree
larger than 12, novel ideas are severely needed. In particular, finding 2-cycles of pairing-
friendly curves with embedding degrees (16, 16) or higher would already be a significant
contribution to improving performance of constructions at current 128-bit and higher
security levels.

Because of these difficulties in finding parameters, current efforts have focused on
finding hybrid cycles containing one pairing-friendly curve, amicable pairs or chains of
pairing-friendly elliptic curves that allow alternative recursive proofs without pairings.

4.2 Cycles of plain elliptic curves

Given the difficulties in finding optimal cycles of pairing-friendly curves (used in protocols
with sub-linear verification), a recent alternative is to find amicable pairs (2-cycles) of plain
elliptic curves, i.e., curves not equipped with efficient bilinear maps, where just the hardness
of the discrete logarithm holds (used in protocols with linear verification [BGH19]). The
advantages of this approach are higher performance, since parameters can scale just like
traditional Elliptic Curve Cryptography, and conservativeness against advances in discrete
logarithm computation over finite fields, observing that advances in solving elliptic curve
discrete logarithms would impact pairing-friendly curves anyway. On the other hand, these
advantages come at mild increase in proof sizes and verification times.

Silverman and Stange [SS11] showed that there exist elliptic curves with arbitrary long
cycles, and conjectured that for any elliptic curve E/Q, the number QE(X) of prime pairs
(p, q) with p < q and p ≤ X such that reducing E modulo p and q gives an amicable pair
is such that:

1. QE(X) = Θ

( √
X

(logX)2

)
as X →∞ if E does not have complex multiplication;

2. QE(X) ≈ AE
X

(logX)2
for a constant AE > 0, otherwise.

In other words, there is a surprising difference between the CM and non-CM cases,
and amicable pairs are asymptotically common. The reason for why CM curves have so
many amicable pairs is attributed to the fact that if E/Q has CM and #Ep(Fp) = q then
there are generally only two possible values for #Eq(Fq): p and 2q + 2 − p, while non-
CM curves have #Eq(Fq) ranging throughout the interval given by the Hasse condition
p− 2

√
p+ 1 ≤ r ≤ p+ 2

√
p+ 1. Further research in [Jon13,Par19] has refined and proven

these estimates on average.
Regarding security, one notes that the extreme case of an 1-cycle, i.e. #E(Fp) = p

leads to anomalous curves for which the discrete logarithm can be computed in linear
time [Sma99]. For longer cycles, a set of requirements for choosing parameters can be
derived from the SafeCurves [BL] criteria for ECC security:

1. Hardness of the ECDLP against Pollard’s rho method on the curve and twist.

2. Large embedding degree and CM discriminant D.
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3. Rigidity for generating parameters in a reproducible manner.

4. Availability of Montgomery ladder and complete addition laws.

5. Efficient bijective maps (encodings) between uniform random strings and a large
set of rational points on the curve. Such an encoding can also be used for hashing
efficiently to the curve, as required by some protocols.

A conservative choice of parameters attempts to finds curves that maximize the set of
satisfied security requirements.

sec(p|q)256k1 curves.

Probably the earliest 2-cycle of plain elliptic curves with application in zero-knowledge
proofs was based on the elliptic curve adopted for signatures in Bitcoin, the secp256k1
curve from the 2010 SEC2 standard [Bro10]. Later, the secq256k1 was derived with the
motivation to be able to build zero-knowledge proofs over already deployed cryptosystems
by using the closely related curve obtained with just swapping base field and order [Poe18]:

Ep/Fp : y2 = x3 + 7 of order q, called secp256k1
Eq/Fq : y2 = x3 + 7 of order p, called secq256k1, with
p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1 and
q = 2256 − 432420386565659656852420866394968145599.

These curves satisfy SafeCurves criteria 1 and 3, but have CM discriminant D = −3 for
the efficient endomorphism [GLV01]; and prime order which does not allow the original
Montgomery ladder or Elligator encoding [BHKL13]. However, an optimized version of
the Elligator Squared [Tib14] encoding can be used [Wui21].

Tweedle curves.

One of the first 2-cycles of elliptic curves suitable for recursive proofs was the Tweedledum-
Tweedledee curves in Halo [BGH19]:

Ep/Fp : y2 = x3 + 5 of order q, called Tweedledum;
Eq/Fq : y2 = x3 + 5 of order p, called Tweedledee, with
p = 2254 + 4707489545178046908921067385359695873 and
q = 2254 + 47074895442921170826879611902959288334.

These curves satisfy some of the SafeCurves criteria at the 126-bit security, but have
CM discriminant D = 3 as a consequence of how they were constructed, and do not benefit
from the Montgomery ladder as prime-order curves. On the other hand, they have high
2-adicity, are equipped with fast endomorphisms for efficient scalar multiplication, and
somewhat efficient encoding/hashing algorithms.
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Pasta curves.

Like the Tweedle curves, Pallas and Vesta form a 2-cycle of elliptic curves for recursive
proofs in Halo 2 and beyond [Hop20]:

Ep/Fp : y2 = x3 + 5 of order q, called Pallas;
Eq/Fq : y2 = x3 + 5 of order p, called Vesta, with
p = 2254 + 45560315531419706090280762371685220353 and
q = 2254 + 45560315531506369815346746415080538113.

These curves provide several of the attractive properties of the Tweedle curves, while
relaxing twist security to 100 bits for Pallas, and otherwise improving over them on a
number of ways. Both curves have:

• Lower-degree isogenies (3 instead of 23) from curves with a nonzero j-invariant,
which accelerates hashing using the Wahby-Boneh method [WB19].

• The same 2-adicity of 32 (instead of 33 and 34) that accelerates square root extraction
and simplifies point compression.

• Sparse moduli to accelerate base field arithmetic in the Montgomery representation.

• A reproducible generation method based on a search utility that is publicly available
and should facilitate searching for similar 2-cycles in the future, satisfying rigidity
concerns.

The generation method specializes the CM method for D = 3 to produce curves of
the form E(F) : y2 = x3 + b with b 6= 0. It looks for values (y, t) within a certain range
such that p = (3y2 + t2)/4 is a prime with the desired length and p ≡ 1 (mod 6) to
equip the curve with a fast endomorphism. By requiring (y − 1)/2 and (t − 1)/2 to be
multiples of 2L, p − 1 will be a multiple of 2L and q − 1 will be a multiple of 2L for
q ∈ {p+ 1− t, p+ 1 + (t− 3y)/2} among the six possible orders given by the CM method.
Algorithm 4.1 summarizes the generation strategy.

Algorithm 4.1: FindAmicablePair(`, L)
Input: designed length ` for prime p, 2-adicity L, k-bit security
Output: 2-cycle of curves Ep, Eq.

1 while true:
2 Find (y, t) such that:
3 • 4p = 3y2 + t2, 2L | (y − 1)/2, 2L | (t− 1)/2;
4 • p is prime, |p| = ` ∧ p ≡ 1 (mod 6);
5 for q ∈ {p+ 1− t, p+ 1 + (t− 3y)/2}:
6 if q 6∈ {p, p+ 1, p− 1} ∧ q ≡ 1 (mod 6) ∧ 2L|(q − 1) ∧ q is prime:
7 Find bp incrementally such that Ep(Fp) : y2 = x3 + bp has order q;
8 Find bq incrementally such that Eq(Fq) : y2 = x3 + bq has order p;
9 if ECDLPSecurity(Ep) ≥ k ∧ ECDLPSecurity(Eq) ≥ k:

10 return (Ep, Eq);

Generalizing the method for constructing 2-cycles described above gives the immediate
corollary that every curve generated with the CM method using a small discriminant
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forms a cycle with another CM curve generated with the prescribed order given by the
characteristic of the base field. In particular, if q = p + 1 − t with CM discriminant D
(such that t2 − 4p = y2D), then taking s = 2 − t automatically gives p = q + 1 − s and
s2 − 4q = t2 − 4p = y2D.

4.3 Hybrid cycles of elliptic curves

A middle-ground alternative to cycle of pairing-friendly curves and cycles of plain elliptic
curves is half-pairing cycles, where only one of the curves in a 2-cycle is pairing-friendly.
This can be potentially useful to combine recursive proofs with protocols based on crypto-
graphic pairings.

Using the results from previous sections, it is possible to generate half-pairing cycles
where the pairing-friendly curve is of prime order by just using the CM method. Hence
this strategy applies to generating 2-cycles where the pairing-friendly curve is either from
the BN, Freeman or MNT families. One such example is the Pluto-Eris curve.

Pluto-Eris curves.

Pluto and Eris form a 2-cycle of elliptic curves [Hop21]:

Ep/Fp : y2 = x3 + 57 is a BN curve of order q, called Pluto;
Eq/Fq : y2 = x3 + 57 is a plain curve of order p, called Eris, with
p = 36x4 + 36x3 + 24x2 + 6x+ 1 and
q = 36x4 + 36x3 + 18x2 + 6x+ 1, for x = −(2110 + 260 + 239 + 235 − 231).

The field size of 446 bits for Pluto is chosen to satisfy 128 bits of security for pair-
ings [Gui20], although it naturally leaves a larger security margin for Eris. Regarding
performance, both curves have the high 2-adicity of 32, are again equipped with fast endo-
morphisms for efficient scalar multiplication due to the choice of small CM discriminant
and efficient encoding/hashing algorithms. The choice of seed for the BN curve gives a
particularly fast pairing computation due to its low Hamming weight.

Another such example is the hybrid cycle based on a BN382 curve that was briefly
used by the Mina testnet in early 2020 [Mec20].

BN382-Plain curves.

BN382 forms, with a related plain curve, a 2-cycle of elliptic curves [Mec20]:

Ep/Fp : y2 = x3 + 14 is a BN curve of order q;
Eq/Fq : y2 = x3 + 7 is a plain curve of order p, with
p = 36x4 + 36x3 + 24x2 + 6x+ 1 and
q = 36x4 + 36x3 + 18x2 + 6x+ 1, for x = 294 + 281 + 274 + 266.

The field sizes of 382 bits are chosen to satisfy slightly less than 128 bits of security for
pairings, while allowing an efficient 6-limb arithmetic on 64-bit architectures. Similarly to
Pluto-Eris, both curves have the high 2-adicity of 64, are equipped with fast endomorphisms
for efficient scalar multiplication due to the choice of small CM discriminant and efficient
encoding/hashing algorithms. The choice of seed for the BN curve gives a particularly fast
pairing computation due to its low Hamming weight.
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4.4 Chains of pairing-friendly elliptic curves

We have seen in previous sections that constructing a cycle of two pairing-friendly curves is
a very difficult task, and results in a very slow pairing computation, and large parameters.
Relaxing the conditions on the curves, one can look for a chain of pairing-friendly elliptic
curves, as in Definition 4.3.

Definition 4.2. An m-chain of elliptic curves is a list of distinct curves

E1/Fp1 , . . . , Em/Fpm

where p1, . . . , pm are large primes and

p1 | #E2(Fp2), . . . , pi−1 | #Ei(Fpi), . . . , pm−1 | #Em(Fpm) . (4.1)

Definition 4.3. An m-chain of SNARK-friendly elliptic curves is an m-chain where each
of the {Ei/Fpi}1≤i≤m curves

• is pairing-friendly;

• has a highly 2-adic subgroup, i.e. ri−1 ≡ 0 mod 2L for a large L ≥ 1 (ri | #Ei(Fpi)).

In a 2-chain, the first curve is denoted the inner curve, while the second curve whose
order is the characteristic of the inner curve, is denoted the outer curve.

Previous work on chains of pairing-friendly curves.

Approximately at the same time as [BCTV14a] released the first cycle of MNT curves,
Costello et al. [CFH+15] presented a 2-chain of pairing-friendly curves to obtain a bounded
recursive proof composition (of depth 2). Their inner curve is the popular BN curve
from [NAS+08] with seed x = −(262 + 255 + 1) and their outer curve is a new Brezing–
Weng curve of embedding degree 6 and 509 bits (just under the machine-word-aligned size
of 512 bits). However, the curves do not satisfy Condition (i) that is, no large power of 2
divides neither r − 1 nor p− 1. It is surprising that they did not use another widespread
BN curve with seed x = 262 − 254 + 244 for example (Beuchat et al. [BGM+10], in the
TEPLA library), which does satisfy Condition (i): 245 | r− 1 and 245 | p− 1. Nevertheless,
the Geppetto construction is the first example of a 2-chain of pairing-friendly curves (with
parameters having a polynomial form) that we found in the literature, to the best of our
knowledge.

Probably because Geppetto appeared before the new TNFS algorithm and the re-
evaluation of all key sizes of pairing-friendly curves, the MNT cycle of 298 bits was a
milestone construction, while the Geppetto 2-chain was not remembered in the subsequent
construction named ZEXE [BCG+20]. In light of the need of larger key-sizes, Bowe et
al. released a 2-chain of pairing-friendly curves based on the BLS12 family. The inner
curve is a BLS12-377 curve with 246 | r − 1 and 246 | p − 1. However the outer curve
was a Cocks–Pinch curve (CP6-782) that did not benefit from all possible speed-ups of
pairing-friendly curves.

In [EHG20], we introduced a 2-chain of curves made of the previous BLS12-377 and a
new BW6-761 curve, a Brezing–Weng curve of embedding degree 6 defined over a 761-bit
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prime field, which we demonstrated to be orders of magnitude faster than CP6-782. Indeed
many optimizations are now available, from a twist of degree 6 to an optimal ate pairing,
and 761 bits fit in one less machine word of 64 bits compared to 782 bits. We investigate
many different possibilities of 2-chains with BLS12, BLS24 and BN inner curves, and
Brezing–Weng outer curves of embedding degree 6, but also Cocks–Pinch curves of the
larger embedding degrees 8 and 12.

4.4.1 Inner curves: Barreto–Lynn–Scott (BLS) curves

We investigate the BLS family as an option for a SNARK-friendly inner curve. We first
present our results for a better arithmetic on all BLS curves and then argue on the choice
of BLS12 and BLS24 curves for our applications. Later in the survey paper [AEHG22], we
generalize the framework to include BN curves as well.

Parameters with a polynomial form

BLS curves were introduced in [BLS03]. This is a family of pairing-friendly elliptic curves
of embedding degree k multiple of 3 but not multiple of 18. Well-known families are given
with k = 2i3j for i, j ≥ 0: k = 9, 12, 24, 27, 48 (Table 7.1). The curves have j-invariant
0, discriminant −D = −3. Each family has polynomial parameters p(x), r(x), t(x) for
characteristic, subgroup order of embedding degree k, and trace. The subgroup order
is r(x) = Φk(x) the k-th cyclotomic polynomial. The trace has a simple expression
t(x) = x+ 1, so that the ate pairing whose Miller loop computes the function fx,Q(P ) is
optimal in terms of Vercauteren’s paper [Ver10]. The curve order is p(x) + 1− t(x) and the
CM equation is 4p(x) = t(x)2 +Dy(x)2. We state below useful lemmas and their proofs.
The explicit polynomials for BLS curves with k ≤ 99 are given in Tables 4.3 and 4.4.

Lemma 4.1. The cofactor c1(x) of BLS curves such that p(x) + 1− t(x) = c1(x)r(x) has
the form

1. (x− 1)2/3 · c2(x) for odd k, where c2(x) = (x2k/3 + xk/3 + 1)/Φk(x) ∈ Q[x];

2. (x− 1)2/3 · c2(x) for even k, where c2(x) = (xk/3 − xk/6 + 1)/Φk(x) ∈ Q[x].

Lemma 4.2. For all BLS curves, the polynomial form of the characteristic p(x) is such
that (x− 1)/3 divides p(x)− 1.

Proof (of Lemma 4.2). Observe that q(x)− 1 = c(x)r(x) + t(x)− 2, and t(x)− 2 = x− 1.
For odd k, from Lemma 4.1 one has q(x)− 1 = (x− 1)2/3 · (x2k/3 + xk/3 + 1) + x− 1 =
(x− 1)/3 · ((x− 1)(x2k/3 + xk/3 + 1) + 1).

For even k, from Lemma 4.1 one has q(x)− 1 = (x− 1)2/3 · (xk/3− xk/6 + 1) + x− 1 =
(x− 1)/3 · ((x− 1)(xk/3 − xk/6 + 1) + 1). In both cases, (x− 1)/3 divides q(x)− 1.

Lemma 4.3. The parameter y(x) of BLS curves has the form

1. (x− 1)(2xk/3 + 1)/3 for odd k;

2. (x− 1)(2xk/6 − 1)/3 for even k.

Proof (of Lemmas 4.1 and 4.3). Let us consider odd k. Observe that xk/3 is a primitive
third root of unity (−1 +

√
−3)/2 modulo r(x) = Φk(x), and 1/

√
−3 = (2xk/3 + 1)/3.

A solution for y(x) = (t(x) − 2)/
√
−3 mod r(x) is y(x) = (x − 1)(2xk/3 + 1)/3, an then
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Table 4.2: Parameters of BLS curves for k = 2i3j, i ≥ 0, j ≥ 1, 18 - k.
k 2i3j, i, j ≥ 1 (6, 12, 24, 48, 96, . . .) 3j, j ≥ 1 (3, 9, 27, 81, . . .)
t(x) x+ 1

y(x) (x− 1)(2xk/6 − 1)/3 (x− 1)(2xk/3 + 1)/3

r(x) xk/3 − xk/6 + 1 x2k/3 + xk/3 + 1
p(x) r(x)(x− 1)2/3 + x r(x)/3(x− 1)2 + x
c2(x) 1 1
ρ 1 + 6/k 1 + 3/k

q(x) = (t2(x)+3y2(x))/4 is an irreducible polynomial which represents primes in the terms
of [FST10, Definition 2.5]. The curve order is q(x) + 1− t(x) = ((t(x)− 2)2 + 3y2(x))/4 =
((x− 1)2 + (x− 1)2(2xk/3 + 1)2/3)/4 = (x− 1)2/3(x2k/3 + xk/3 + 1) = c(x)r(x). Note that
xk − 1 = (x2k/3 + xk/3 + 1)(xk/3 − 1), hence Φk(x) divides x2k/3 + xk/3 + 1 (as it does not
divide xk/3 − 1), and the cofactor c(x) has the form

c(x) = (x− 1)2/3 · (x2k/3 + xk/3 + 1)/Φk(x) .

In particular for k = 3j, the k-th cyclotomic polynomial is Φ3j(x) = Φ3(x3j−1

) = x2k/3 +
xk/3 + 1, in this case the cofactor c(x) is exactly (x− 1)2/3.

With even k, xk/6 is a primitive 6-th root of unity (1 +
√
−3)/2 modulo r(x) = Φk(x),

and 1/
√
−3 = (2xk/6−1)/3. Then y(x) = (x−1)(2xk/6−1)/3, and q(x) = (t2(x)+3y2(x))/4

is an irreducible polynomial which represents primes in the terms of [FST10, Definition 2.5].
The curve order is q(x) + 1− t(x) = ((t(x)− 2)2 + 3y2(x))/4 = ((x− 1)2 + (x− 1)2(2xk/6−
1)2/3)/4 = (x − 1)2/3(xk/3 − xk/6 + 1) = c(x)r(x). In the same way as for odd k, one
observes that xk − 1 = (xk/3 − xk/6 + 1)(xk/3 + xk/6 + 1)(xk/3 − 1), hence Φk(x) divides
xk/3 − xk/6 + 1, and the cofactor c(x) has the form

c(x) = (x− 1)2/3 · (xk/3 − xk/6 + 1)/Φk(x) .

Lemma 4.4. Any BLS curve has endomorphism ring Z[ω] where ω = (1 +
√
−3)/2.

Proof (of Lemma 4.4). Any BLS curve is an ordinary curve of j-invariant 0 and discrimi-
nant −3, of the form y2 = x3 + b, defined over a prime field Fp where q = 1 mod 3. In this
case, it is well known that the (GLV) endomorphism is of the form ψ : (x, y) 7→ (ωx, y),
where ω ∈ Fp is a primitive third root of unity. It has characteristic polynomial ψ2+ψ+1 =
0 and is defined over Fp. The endomorphism ring of the curve is Z[(1 +

√
−3)/2].

Choosing a curve coefficient b = 1

Proposition 4.1. Half of BLS curves are of the form Y 2 = X3 + 1, these are the curves
with odd seed x.

Proof. Let E : Y 2 = X3 + b be a BLS curve over Fp and g neither a square nor a
cube in Fp. One choice of b ∈ {1, g, g2, g3, g4, g5} gives a curve with the correct order (i.e.
r | #E(Fp)) [Sil09, §X.5]. For all BLS curves, x−1 | #E(Fp) (cf Lemma 4.1, Tables 4.3, 4.4)
and 3 | x−1 (which leads to all involved parameters being integers). If, additionally, 2 | x−1
then 2, 3 | #E(Fp) and the curve has points of order 2 and 3. A 2-torsion point is (x0, 0)
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Table 4.3: Parameters of BLS curves, 6 | k, 18 - k.
k 6, 12, 24, 48, 96 30, 42, 66, 78 60, 84
t(x) x+ 1

y(x) (x− 1)(2xk/6 − 1)/3

r(x) xk/3 − xk/6 + 1 Φk(x)
q(x) r(x)(x− 1)2/3 + x r(x)(x− 1)2/3c2(x) + x
c2(x) 1 x2 − x+ 1 x4 − x2 + 1
ρ 1 + 6/k (k/3 + 2)/ϕ(k)

Table 4.4: Parameters of BLS curves, k = 3 mod 6.

k 3, 9, 27, 81
15, 21, 33, 39,

51, 57, 69, 87, 93
45, 63, 99 75

t(x) x+ 1

y(x) (x− 1)(2xk/3 + 1)/3

r(x) x2k/3 + xk/3 + 1 Φk(x)
q(x) r(x)/3(x− 1)2 + x r(x)(x− 1)2/3c2(x) + x
c2(x) 1 x2 + x+ 1 x6 + x3 + 1 x10 + x5 + 1
ρ 1 + 3/k (2k/3 + 2)/ϕ(k)

with x0 a root of x3 + b, hence b = (−x0)3 is a cube. The two 3-torsion points are (0,±
√
b)

hence b is a square. This implies that b is a square and a cube in Fp and therefore b = 1
is the only solution in the set {gi}0≤i≤5 for half of all BLS curves: those with odd x.

SNARK-friendly inner BLS curves

We focus on inner SNARK-friendly BLS curves as in Definition 4.3 at the 128-bit security
level and suitable for the Groth16 and KZG-based universal SNARKs. On the one hand, a
Groth16-tailored curve should optimizeG1 andG2 operations, and the pairing computation:
the proving algorithm involves MSMs in G1 and G2, and the verification algorithm involves
multi-pairings. On the other hand, KZG polynomial commitments only need multi-scalar
multiplications in G1 and multi-pairings.

According to the post1, an efficient non-conservative choice of a Groth16-tailored curve
at the 128-bit security level is a BLS12 curve of roughly 384 bits. A conservative but efficient
alternative is a BLS12 curve of 440 to 448 bits. Then to fulfill SNARK-friendliness, it
is sufficient to choose a seed x s.t. x ≡ 1 mod 3 · 2L with the desired 2-adicity L ≥ 1.
Consequently, Prop. 3.1 and 4.1, and the faster co-factor clearing trick (cf. Section 3.2.1)
apply: such an inner BLS12 is always of the form Y 2 = X3 + 1; multiplying by x − 1 is
sufficient to clear the cofactor on G1, and the efficient GT membership testing applies. In
fact, for all BLS12 curves, gcd(p(x) + 1− t(x),Φ12(p(x))) is always equal to r(x) and the
membership testing boils down to zp = (zp)p · z and zp = zu for z ∈ GT .

KZG-based SNARKs require a 128-bit secure curve with efficient G1 operations and
fast pairing. For a faster G1 arithmetic, we consider a BLS24 curve of roughly 320 bits,
that meets the 128-bit level security [GS21] and gives the best trade-off between small
ρ = log2 p/ log2 r value (ρ = 1.25) and fast pairing. For SNARK-friendliness, cofactor

1https://members.loria.fr/AGuillevic/pairing-friendly-curves/

https://members.loria.fr/AGuillevic/pairing-friendly-curves/
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clearing and curve equation (Y 2 = X3 + 1), the same observations as for BLS12 apply.
For GT membership testing, gcd(p(x) + 1− t(x),Φ24(p(x))) is always equal to r(x) for the
BLS24 curves and the test boils down to zp

2

= (zp
2

)p
2 · z and zp = zu for z ∈ GT .

Remark 4.1. For SNARK-friendly inner BLS, zu ∈ GT can be implemented efficiently by
mixing Granger and Scott’s [GS10] and Karabina’s [Kar13] cyclotomic squares. Since 2L |
u−1, there are L−1 consecutive squarings in the exponentiation. One can use Karabina’s
method for this series and then switch to Granger-Scott’s method for the remaining part.
Hence, trading off one inversion in Fpk/d for 2(L−1) multiplications in Fpk/d. Particularly,
for BLS12 and BLS24, this trick yields significant speedups as long as an inversion in Fp
costs, respectively, less than (6L− 4) and (18L− 16) Fp-multiplications, which is the case
for the curves we are interested in. For instance, gnark-crypto implements an optimized
x86-64 Fp-multiplication [gna20] and Pornin’s optimized GCD for Fp-inversion [Por20].
For BLS12-377, the ratio of these operations is ×62 and L = 46, and for BLS24-315 the
ratio is ×60 and L = 20 and 8 using custom short addition chains that maximize L’s.

4.4.2 Outer curves: Brezing–Weng, Cocks–Pinch

This section presents the families of 2-chains with a BW6 curve on top of an inner BLS12
curve, and on top of an inner BLS24 curve. Cocks-Pinch curves (CP) [FST10, §4.1] are
addressed in Section 12. For BW6, all parameters and formulas are given as polynomials in
the variable x, with integer parameters ht, hy that are the lifting cofactors of the Brezing–
Weng construction. We use subscripts pbls, pbw, p× to identify parameters of BLS, BW
and CP curves. BW and CP constructions follow the same recipe, but CP deals with
integers, while BW deals with polynomials [FST10, §4.1,§6]. They start from the subgroup
order rbw(x) = pbls(x), r×(u) = pbls(u), and look for k-th roots of unity ζk mod pbls to
set the trace value t = ζk + 1. For CP, the existence of ζk requires pbls(u) ≡ 1 mod k:
for k = 6, 12, 8 resp., this means u ≡ 1 mod 3, 1, 10 mod 12, and 1, 10 mod 24 resp. For
BW, the number field defined by pbls(x) only contains ζk(x) for k | 6, limiting the BW
construction to k = 6 at most.

Generic BW6 curve parameters

To satisfy Definition 4.3, a BW curve chained to a BLS curve (of any embedding degree) has
a subgroup of prime order rbw(x) = pbls(x). To get an embedding degree k = 6, a primitive
6-th root of unity ζ6 modulo rbw(x) is required, the trace of the curve modulo rbw is then
tbw,3 = ζ6 +1 mod rbw. Alternatively tbw,0 = ζ6 +1 mod rbw with ζ6 = −ζ6 +1. With D = 3
and 1/

√
−3 = (2ζ6− 1)/3 mod rbw, then ybw,0 = (tbw,0− 2)/

√
−3 = (ζ6 + 1)/3 = −tbw,0/3.

Or with 1/
√
−3 = −(2ζ6− 1)/3 mod rbw, one has ybw,3 = (tbw,3− 2)/

√
−3 = (ζ6 + 1)/3 =

tbw,3/3. Any BW6 curve will have parameters of the form ti = tbw,i± htr, yi = ybw,i± hyr,
where ht, hy are integer lifting cofactors. We label the two cases according to the constant
coefficient of the polynomial defining the trace modulo rbw: this is either 0 or 3.

One denotes pbw,0(x, ht, hy) = ((tbw,0 + htr)
2 + 3(ybw,0 + hyr)

2)/4. We have

pbw,0 = t2bw,0/3 + tbw,0 · rbw(ht − hy)/2 + r2
bw(h2

t + 3h2
y)/4 , (4.2)

pbw,3 = t2bw,3/3 + tbw,3 · rbw(ht + hy)/2 + r2
bw(h2

t + 3h2
y)/4 . (4.3)

The curve cofactor cbw,i(x, ht, hy) such that cbw,irbw = pbw,i + 1− tbw,i is

cbw,0 = (h2
t + 3h2

y)/4rbw + (ht − hy)/2tbw,0 + (t2bw,0/3− tbw,0 + 1)/rbw − ht (4.4)
cbw,3 = (h2

t + 3h2
y)/4rbw + (ht + hy)/2tbw,3 + (t2bw,3/3− tbw,3 + 1)/rbw − ht (4.5)
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Table 4.5: Are 2(ht ± hy), h2
t + 3h2

y multiple of 4?
ht hy ht ± hy h2

t + 3h2
y 2(ht ± hy)tbw,i + (h2

t + 3h2
y)rbw mod 4

mod2 mod2 mod2 mod4 tbw,0 = 0 mod 2 tbw,3 = 1 mod 2
0 0 0 0 0 0
0 1 1 3 3rbw 6= 0 2 + 3rbw 6= 0
1 0 1 1 rbw 6= 0 2 + rbw 6= 0
1 1 0 0 0 0

where (t2bw,i/3 − tbw,i + 1)/rbw = Φ6(tbw,i − 1)/(3rbw) is a polynomial in Q[x] since by
construction rbw divides Φ6(tbw,i − 1). Tables 4.6 and 4.9 give the explicit values of the
polynomials for BLS12 and BLS24 inner curves.

Cofactor of G2. The group G2 of order rbw is a subgroup of one of the two sextic twists
of E, defined over Fp. Generically, the orders of the two sextic twists are p+ 1− (t+ 3y)/2
and p+ 1− (t− 3y)/2, where y satisfies t2− 4p = −3y2. One of the orders is a multiple of
rbw, and has cofactor c′bw,i. Observe that (tbw,0 − 3ybw,0)/2 = tbw,0 since ybw,0 = −tbw,0/3.
The correct sextic twist has order

pbw,0 + 1− (tbw,0 + htrbw − 3(ybw,0 + hyrbw))/2

= pbw,0 + 1− (tbw,0 − 3ybw,0)/2︸ ︷︷ ︸
=tbw,0

−htrbw/2 + 3hyrbw/2

= pbw,0 + 1− tbw,0 − htrbw︸ ︷︷ ︸
=#E(Fp)=rbw·cbw,0

+(htrbw + 3hyrbw)/2

= rbw · (cbw,0 + (ht + 3hy)/2)︸ ︷︷ ︸
c′bw,0

hence
c′bw,0 = cbw,0 + (ht + 3hy)/2 . (4.6)

For the other trace, (tbw,3 + 3ybw,3)/2 = tbw,3 and the correct sextic twist has order
pbw,3 + 1− (tbw,3 + htrbw + 3(ybw,3 + hyrbw))/2 a multiple of rbw, and cofactor

c′bw,3 = cbw,3 + (ht − 3hy)/2 . (4.7)

Congruences of cofactors ht, hy. One requires pbw,i (Eqs. (4.2), (4.3)) to be an
integer and a prime. Because tbw,i is always multiple of 3, t2bw,i/3 is an integer. We need
(ht ± hy)/2tbw,i + (h2

t + 3h2
y)/4rbw to be an integer. We now look at (ht ± hy), (h2

t + 3h2
y).

We have tbw,0 always even, then (ht−hy)tbw,0/2 is an integer and we require 4 | (h2
t + 3h2

y).
For that we need ht− hy ≡ 0 mod 2 (see Table 4.5). We have tbw,3 always odd. If (ht + hy)
is odd, then (ht + hy)tbw,3 is odd but at the same time (see Table 4.5), (h2

t + 3h2
y) is odd,

and the condition is not satisfied. Hence we need (ht − hy) to be even, and consequently
we have (h2

t + 3h2
y)/4 an integer. Finally, for both tbw,0 and tbw,3, we need 2 | (ht−hy) and

consequently we have 4 | h2
t + 3h2

y, to ensure pbw to be an integer. Note also that because
x ≡ 1 mod 3, one has tbw = 0 mod 3, and Eqs. (4.2), (4.3) give 4pbw = h2

t mod 3. Because
pbw needs to be prime, ht is not multiple of 3, and 3 - (h2

t + 3h2
y).
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Subgroup membership testing: GT . We apply the technique of Section 3.2.2. BW6
curves over their base field have order cbw,i · rbw = pbw,i + 1− tbw,i − htrbw, hence

pbw,i ≡ tbw,i − 1 mod rbw . (4.8)

As soon as gcd(pbw,i + 1− tbw,i,Φk(pbw,i)) = rbw, then the following two tests are enough:

1. test if zΦk(pbw,i) = 1 with Frobenius maps;

2. test if zpbw,i = ztbw,i−1 with cyclotomic squarings.

Easy part of the final exponentiation. the final exponentiation raises the Miller
loop output f to the power

(p6 − 1)/r = (p6 − 1)/Φ6(p) · Φ6(p)/r = (p3 − 1)(p+ 1)(p2 − p+ 1)/r .

The easy part (p3− 1)(p+ 1) costs one conjugation (p3-Frobenius power), one inversion in
Fp6 , one p-Frobenius power and two multiplications. We optimise the hard part (p2−p+1)/r
in Section 21, 14.

Optimal Pairing Computation. In [EHG20], we presented an optimal ate pairing
formula that can be generalized as follows: write

a0 + a1(tbw,i − 1) = 0 mod rbw (4.9)

with shortest possible scalars a0, a1. On G2, the Frobenius πp has eigenvalue tbw,i− 1. The
optimal ate Miller loop is computed with the formula

fa0,Q(P )fa1,πp(Q)(P ) = fa0,Q(P )fpa1,Q(P ) . (4.10)

Moreover, it turned out that (a1− 1) | a2, and some of the computations were shared. We
now introduce another optimisation. We consider Eq. (4.9) with a new point of view. BW6
curves have an endomorphism φ : (x, y) 7→ (ωx,−y) on G1 of eigenvalue λ = tbw,i − 1 =
pbw,i mod rbw, and characteristic polynomial χ2 − χ + 1 = 0. The (bilinear) twisted ate
pairing [HSV06, §6] has precisely Miller loop fλ,P (Q). However, λ is too large for a fast
pairing computation so instead, we consider a multiple of the Tate pairing fhr,P (Q) =
fa0+a1λ,P (Q) for some h (e.g. Eqs.(4.19), (4.26)). Instead of decomposing the Miller function
fa0+a1λ,P (Q) into sub-functions fa0,P (Q)fa1λ,P (Q), we use Lemma 4.5 to get shared squares
in Fpk and shared doubling steps in G1 (Tate), resp. G2 (ate), in the same idea as a multi-
scalar multiplication. This gives us Alg. 4.2. We are in the very particular case of k/d = 1,
φ on G1 and πp on G2 both have eigenvalue pbw,i mod rbw, and our variant of the twisted
ate pairing is competitive with the ate pairing.

Lemma 4.5. Let E be a pairing-friendly curve with the usual order-r subgroups G1,G2,
two points P ∈ Gi, Q ∈ G1−i of order r, and an endomorphism φ of eigenvalue λ over
Gi: φ(P ) = [λ]P , λ = pe mod r for some 1 ≤ e ≤ k − 1. The Miller function can be
decomposed as follows.

f2(u+vλ),P (Q) = f 2
u+vλ,P (Q)`(u+vλ)P,(u+vλ)P (Q) (4.11)

fu+1+vλ,P (Q) = fu+vλ,P (Q)`(u+vλ)P,P (Q) (4.12)
fu+(v+1)λ,P (Q) = fu+vλ,P (Q)`(u+vλ)P,λP (Q) (4.13)

fu+1+(v+1)λ,P (Q) = fu+vλ,P (Q)`P,λP (Q)`(u+vλ)P,(1+λ)P (Q) (4.14)

where λP = φ(P ), (1 + λ)P = P + φ(P ), and `P,λP (Q) can be precomputed.
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Algorithm 4.2: Miller loop for optimal pairing with endomorphism φ on G1 (Tate),
resp. G2 (ate) of eigenvalue λ and degree 2.
Input: P ∈ Gi, Q ∈ G1−i, end. φ on Gi of eigenvalue λ, scalars a0, a1

s. t. a0 + a1λ = 0 mod r
Output: fa0+a1λ,P (Q)

1 P0 ← P ; P1 ← φ(P )
2 if a0 < 0: a0 ← −a0; P0 ← −P0

3 if a1 < 0: a1 ← −a1; P1 ← −P1

4 P1+λ ← P0 + P1; `1,λ ← `P0,P1(Q)
5 l0 ← bits(a0); l1 ← bits(a1)
6 if #l0 = #l1: S ← P1+λ; f ← `1,λ; n← #l0
7 elif #l0 < #l1: S ← P1; f ← 1; n← #l1; pad l0 with 0 s.t. #l0 = n
8 else: S ← P0; f ← 1; n← #l0; pad l1 with 0 s.t. #l1 = n
9 for i = n− 2 downto 0:

10 f ← f 2 ; `t ← `S,S(Q); S ← [2]S
11 if l0[i] = 0 and l1[i] = 0: f ← f · `t // Eq. (4.11), mfull-sparse

12 elif l0[i] = 1 and l1[i] = 1: // Eq. (4.14)
13 S ← S + P1+λ; `← `S,P1+λ

(Q)
14 f ← (f · `t) · (` · `1,λ) // mk +mfull-sparse +msparse-sparse

15 elif l0[i] = 1: // Eq. (4.12)
16 S ← S + P0; `← `S,P0(Q)
17 f ← f · (`t · `) // mk +msparse-sparse

18 else: (l1[i] = 1) // Eq. (4.13)
19 S ← S + P1; `← `S,P1(Q)
20 f ← f · (`t · `) // mk +msparse-sparse

21 return f

Proof (of Lemma 4.5). The usual Miller formulas give (see e.g. [Ver10])

f2(u+vλ),P (Q) = f 2
u+vλ,P (Q) f2,[u+vλ]P (Q)︸ ︷︷ ︸

= tangent at (u+vλ)P

fu+1+vλ,P (Q) = fu+vλ,P (Q) f1,P (Q)︸ ︷︷ ︸
=1

`(u+vλ)P,P (Q)

fu+(v+1)λ,P (Q) = fu+vλ,P (Q) fλ,P (Q)︸ ︷︷ ︸
bilinear pairing

`(u+vλ)P,λP (Q)

fu+1+(v+1)λ,P (Q) = fu+vλ,P (Q) f1+λ,P (Q)︸ ︷︷ ︸
f1,P (Q)fλ,P (Q)`P,λP (Q)

`(u+vλ)P,(1+λ)P (Q)

The term f1,P (Q) = 1 can disappear. The term fλ,P (Q) is a bilinear pairing as λ ≡
pe mod r, and then can be removed. Finally f1+λ,P (Q) simplifies to `P,λP (Q) which can be
precomputed.

Remark 4.2. Alg. 4.2 shares the squarings in Fpk and the doubling steps in G1 (Tate),
resp. G2 (ate). With all parameterized pairing-friendly families, the scalar decomposition
gives all but one trivial Miller function, and the ate, or twisted-ate pairing boils down
to one Miller loop computation of optimal length, and a few line additions [Ver10]. In
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Table 4.6: Parameters of a BW6 outer curve with a BLS12 inner curve, with x ≡ 1 mod 3.
parameter value property
rbw pbls = (x− 1)2/3(x4 − x2 + 1) + x generates prime
ζ6 −x5 + 3x4 − 3x3 + x− 1
ζ6 x5 − 3x4 + 3x3 − x+ 2

1/
√
−3 −(2x5 − 6x4 + 6x3 − 2x+ 3)/3

tbw,0 −x5 + 3x4 − 3x3 + x 6 | tbw,0

tbw,3 x5 − 3x4 + 3x3 − x+ 3 3 | tbw,3, 2 - tbw,3

ybw,0 (x5 − 3x4 + 3x3 − x)/3 = −tbw,0/3 2 | ybw,0

ybw,3 (x5 − 3x4 + 3x3 − x+ 3)/3 = tbw,3/3 2 - ybw,3

pbw,0 ((tbw,0 + htrbw)2 + 3(ybw,0 + hyrbw)2)/4 generates prime
pbw,3 ((tbw,3 + htrbw)2 + 3(ybw,3 + hyrbw)2)/4 generates prime
Φ6(tbw,i − 1) 3rbw(x4 − 4x3 + 7x2 − 6x+ 3)
cbw,0 (h2

t + 3h2
y)/4rbw + (ht − hy)/2tbw,0 + x4 − 4x3 + 7x2 − 6x+ 3− ht

cbw,3 (h2
t + 3h2

y)/4rbw + (ht + hy)/2tbw,3 + x4 − 4x3 + 7x2 − 6x+ 3− ht
c′bw,0 (G2) cbw,0 + (ht + 3hy)/2
c′bw,3 (G2) cbw,3 + (ht − 3hy)/2

Optimal ate Miller loop fa0,Q(P ) · fpa1,Q(P ), Optimal twisted ate fa0+a1λ,P (Q)

λ = tbw,0 − 1 a0 = x3 − x2 − x, a1 = x+ 1 a′0 = −(x+ 1), a′1 = x3 − x2 + 1
λ = tbw,3 − 1 a0 = x+ 1, a1 = x3 − x2 − x a′0 = x3 − x2 + 1, a′1 = −(x+ 1)

Final exponentiation
ebw,0 (x+ 1)Φ6(pbw,0)/rbw =

((x+ 1)pbw,0 − x3 + x2 − 1)(cbw,0 + ht) + 3(pbw,0 − x2 + 2x− 2)
e′bw,0 (x3 − x2 − x)Φ6(pbw,0)/rbw =

((x3 − x2 − x)pbw,0 + x+ 1)(cbw,0 + ht)− 3(1 + (x2 − 2x+ 1)pbw,0)
ebw,3 (x+ 1)Φ6(pbw,3)/rbw =

(x3 − x2 − x+ (x+ 1)pbw,3)(cbw,3 + ht) + 3(x2 − 2x+ 1 + pbw,3)
e′bw,3 (x3 − x2 + 1)Φ6(pbw,3)/rbw =

((x3 − x2 + 1)pbw,3 − x− 1)(cbw,3 + ht)− 3(1− (x2 − 2x+ 2)pbw,3)

our case, while being short, none of the scalars a0, a1 is trivial. It is possible to derive
a 2-NAF variant of Alg. 4.2 (see Table 4.14). It requires the additional precomputations
of P − φ(P ) and `P,−λP (Q). From the estimate in Table 4.14, our Miller loop variant in
Alg. 4.2 would give up to a 7% speed-up compared to [EHG20, Alg. 5], for BLS24-BW6
curves. Our Alg. 4.2 works for Tate and ate pairing. If there is an endomorphism of higher
degree on G2 (or two independent endomorphisms), use Alg. 4.10 instead.

BW6 with BLS-12

Table 4.6 gives the parameters of the BW6-BLS12 curves in terms of the seed x, and the
two lifting cofactors ht, hy.

Optimal Ate Pairing Computation. We investigate two pairings on our BW6 curves:
optimal ate and optimal Tate. In [EHG20], we presented an optimal ate pairing formula,
for any BW6 curve with tbw,3:

mopt. ate = fu+1,Q(P )fpu3−u2−u,Q(P ) and eopt. ate = m
(p6bw−1)/rbw
opt. ate (4.15)
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with optimized computation in [EHG20, Alg. 5]:

fu = fu,Q(P ); mopt. ate = fu · (fu)pu2−u−1,[u]Q(P )`[u]Q,Q(P ) , (4.16)

where [u]Q is a side result of the computation fu,Q(P ). The equivalent formula for a trace
tbw,0 is

fu(u2−u−1),Q(P )fpu+1,Q(P ) (4.17)

whose optimized version is

fu = fu,Q(P ); mopt. ate = (fu · `[u]Q,Q(P ))p(fu)u2−u−1,[u]Q(P ) . (4.18)

In the two cases tbw,0 and tbw,3, the cost in terms of multiplications in the base field are
the same.

Optimal Pairing Computation with Alg. 4.2. G1 and G2 have an endomorphism
φ1, φ2 of eigenvalue λbw,i = tbw,i − 1 mod rbw. Low degree polynomials (short scalars once
evaluated at a seed u) a0, a1 s.t. a0 + a1λbw,i = 0 mod rbw are

(x3 − x2 − x) + (x+ 1)(tbw,0 − 1) = −3rbw (4.19)
−x− 1 + (x3 − x2 + 1)(tbw,0 − 1) = −3(x2 − 2x+ 2)rbw (4.20)
(x+ 1) + (x3 − x2 − x)(tbw,3 − 1) = 3(x− 1)2rbw (4.21)
(x3 − x2 + 1)− (x+ 1)(tbw,3 − 1) = −3rbw (4.22)

The optimal Tate or ate Miller loop with e.g. (4.20), (4.22) are:

mTate = f−u−1+(u3−u2+1)λbw,0,P (Q), mate = f−u−1+(u3−u2+1)pbw,0,Q(P )

mTate = fu3−u2+1−(u+1)λbw,3,P (Q), mate = fu3−u2+1−(u+1)pbw,3,Q(P ) .

G1 and G2 membership testing. ForG1 membership testing, one uses one of Eqs. (4.19),
(4.20), resp. (4.21), (4.22), with x = u. However, these formulas (e.g. [u3− u2− u]P + [u+
1]φ(P )) will output O for any point in the subgroup of order 3rbw. For G2 membership
testing, the same equations can be re-used: we showed in Section 4.4.2 that the twisted
curve E ′ of G2 has the same trace as E modulo rbw, either (tbw,0 − 3ybw,0)/2 = tbw,0, or
(tbw,3 + 3ybw,3)/2 = tbw,3.

Final Exponentiation. Writing the hard part of the final exponentiation zΦ6(pbw,i)/rbw

in terms of x, ht, hy, Magma runs Lenstra–Lenstra–Lovász (LLL) lattice basis reduction
algorithm on multivariate polynomials and provides the result. With tbw,i, LLL gives short
vectors for the exponent:

ebw,i = 3(x+ 1)Φk(pbw,i)/rbw(x) (4.23)

and the formulas for ebw,i are

ebw,0 = 3(cbw,0+ht)(−x3+x2−1+ (x+ 1)pbw,0) + 9(x2− 2x+ 2− pbw,0) (4.24)
ebw,3 = 3(cbw,3+ht)(x

3− x2 − x+ (x+ 1)pbw,3) + 9(x2− 2x+ 1 + pbw,3) (4.25)

Alternatively we obtain

e′bw,0 = 3(x3 − x2 − x)Φk(pbw,0)/rbw(x)

e′bw,3 = 3(x3 − x2 + 1)Φk(pbw,3)/rbw(x)
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Curve Cost in terms of operations in Fp6
BN-BW6, t0, Alg. 4.7 6ex + eh2 + eh1 + 6s + 14m + f + 3cj
BN-BW6, t0, alternative 6ex + eh2 + eh1 + 6s + 14m + f + 4cj
BN-BW6, t3, alternative 6ex + eh2 + eh1 + 6s + 15m + f + 2cj
BN-BW6, t3, Alg. 4.8 6ex + eh2 + eh1 + 6s + 15m + f

BLS12-BW6, t0, Alg. 4.3 5ex−1 + e(x−1)/3 + 3ex+1 + eh2 + eh1 + 14m + 2s + f + 4cj

BLS12-BW6, t0, alt. 5ex−1 + e(x−1)/3 + 3ex+1 + eh2 + eh1 + 15m + 2s + f + 4cj

BLS12-BW6, t3, Alg. 4.4 5ex−1 + e(x−1)/3 + 3ex+1 + eh2 + eh1 + 14m + 2s + f + 3cj

BLS12-BW6, t3, alt. 5ex−1 + e(x−1)/3 + 3ex+1 + eh2 + eh1 + 15m + 2s + f + 4cj

BLS24-BW6, t0, Alg. 4.5 5ex−1 + e(x−1)/3 + 3ex
2+1 + 3ex+1 + eh2 + eh1 + 14m + 2s + f + 4cj

BLS24-BW6, t0, alt. 5ex−1 + e(x−1)/3 + 3ex
2+1 + 3ex+1 + eh2 + eh1 + 15m + 2s + f + 4cj

BLS24-BW6, t3, Alg. 4.6 5ex−1 + e(x−1)/3 + 3ex
2+1 + 3ex+1 + eh2 + eh1 + 15m + 2s + f + 2cj

BLS24-BW6, t3, alt. 5ex−1 + e(x−1)/3 + 3ex
2+1 + 3ex+1 + eh2 + eh1 + 16m + 2s + f + 3cj

Table 4.7: Cost of hard part of final exponentiation. ey stands for exponentiation to y,
m is multiplication, s is squaring, f is Frobenius (xp), cj is conjugation, all in Fp6 . For
BLS24-BW6 curves, mx2+1 = (mx)x · m. If x2 + 1 has a lower Hamming weight than
2 Hw(x) + 1, it is faster to do the former.

and the formulas for e′bw,i, where e
′
bw,3 matches with the formulas in [EHG20], are

e′bw,0 = 3(cbw,0+ht)((x
3− x2 − x)pbw,0 + x+ 1)− 9(1 + (x2− 2x+ 1)pbw,0)

e′bw,3 = 3(cbw,3+ht)((x
3− x2 + 1)pbw,3 − x− 1)− 9(1− (x2− 2x+ 2)pbw,3)

Later in [AEHG22], inspired by the work of Hayashida, Hayasaka and Teruya [HHT20] and
the work of Cai, Hu and Zhao [CHZ22], we improve the hard part computation. The key-
ingredient is to factor as many terms as possible. The cost summary is in Tab. 4.7. The Sage-
Math implementation is at https://gitlab.inria.fr/zk-curves/snark-2-chains. Pa-
rameters are in Tab. 4.6, where d = Φ6(ti − 1)/(3r) = (x4 − 4x3 + 7x2 − 6x + 3). We
highlight with an underbrace the same exponent ai that can be shared. The steps in
Alg. 4.3 correspond to the exponents

a = (x− 1)/3
b = a(x− 1) = (x− 1)2/3
c = b((x− 1)2 + 1) = (d− 1)/3 = (x− 1)2/3(x2 − 2x+ 2)
e = −(u+ 1)c+ b− a = t0/3 = (x− 1)2/3(−x3 + x2 − 1)− (x− 1)/3
f = −(u+ 1)(e+ b) + a+ 1 = r = (x− 1)2/3(x4 − x2 + 1) + x

The steps in Alg. 4.4 correspond to this sequence deduced from the former, with t3/3 =
−t0 + 1.

a = (x− 1)/3
b = a(x− 1) = (x− 1)2/3
c = b((x− 1)2 + 1) = (d− 1)/3
b′ = −b
e = b′ + 1
f = c(x+ 1) + e = (x− 1)2/3(x3 − x2 + 1) + 1
g = f + a = t3/3
h = (f + b′)(x+ 1)− e = r

https://gitlab.inria.fr/zk-curves/snark-2-chains
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(x+ 1)
Φ6(p0)

r
=

b0︷ ︸︸ ︷(
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2
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Algorithm 4.3: Hard part of final exp.,
BLS12-BW6, t0
Input: x, m, h1 = (ht − hy)/2,

h2 = (h2
t + 3h2

y)/4

Output: m(x3−x2−x)Φ6(p0)/r

1 Q← mp

2 A← (Qx−1)x−1 ·m .ma′0

3 B ← Ax+1 ·Q .mb′0

4 A← A2 · A .m−3a′0

5 C ← B(x−1)/3

6 D ← Cx−1

7 E ← (Dx−1)x−1 ·D .B(d−1)/3

8 F ← Ex+1 · C ·D .Bt0/3

9 G← (F ·D)x+1 · C ·B .Br

10 H ← F h1 · E
11 H ← H2 ·H ·B ·Gh2

12 return A ·H

Algorithm 4.4: Hard part of final exp.,
BLS12-BW6, t3
Input: x, m, h1 = (ht + hy)/2,

h2 = (h2
t + 3h2

y)/4

Output: m(x+1)Φ6(p3)/r

1 A← mp · (Ax−1)x−1 .ma3

2 B ← m · Ax+1 .mb3

3 A← A2 · A .m3a3

4 C ← B(x−1)/3

5 D ← Cx−1

6 E ← (Dx−1)x−1 ·D .B(d−1)/3

7 D ← D
8 F ← D ·B
9 G← Ex+1 · F

10 H ← G · C .Bt3/3

11 I ← (G ·D)x+1 · F .Br

12 J ← Hh1 · E
13 K ← J2 · J ·B · Ih2
14 return A ·K

Cofactor clearing on G1 and G2 with one endomorphism. The cofactors are cbw,i

for G1 (Eqs. (4.4), (4.5)), resp. c′bw,i for G2 (Eqs. (4.6), (4.7)), Table 4.6. The curve and
its sextic twist for G2 have an endomorphism defined over Fp, of characteristic polynomial
x2 + x+ 1 and eigenvalue λ such that λ2 + λ+ 1 = 0 modulo the curve order. There are
two formulas, one for each choice of eigenvalue λ, λ = −λ− 1 modulo the curve order, and
l0 + l1λ = 0 mod cbw,i, resp. modulo c′bw,i, resp. l0 + l1λ = 0 mod cbw,i, resp. modulo c′bw,i,
summarized in Table 4.8. The formulas are implemented in SageMath, GIT at [EHG21].

BW6 with BLS-24

We follow the same process as for BW6-BLS12 and report the parameters in Table 4.9.
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Table 4.8: Cofactor clearing on Gi with an endomorphism of eigenvalue λ, λ.

G1

cbw,0

l0 = (h2
t + 3h2

y)/4 · (x3 − x2 + 1)− ht(x2 − 2x+ 1)− (ht − 3hy)/2
l1 = (h2

t + 3h2
y)/4 · (x+ 1)− (ht + 3hy)/2 · (x2 − 2x+ 1)− ht

l0 = (h2
t + 3h2

y)/4 · (x+ 1)− (ht + 3hy)/2 · (x2 − 2x+ 1)− ht
l1 = (h2

t + 3h2
y)/4 · (x3 − x2 + 1)− ht(x2 − 2x+ 1)− (ht − 3hy)/2

cbw,3

l0 = (h2
t + 3h2

y)/4 · (x3 − x2 + 1) + ht + (ht + 3hy)/2 · (x− 1)2

l1 = (h2
t + 3h2

y)/4 · (x+ 1)− (ht − 3hy)/2 · (x2 − 2x+ 2) + ht
l0 = (h2

t + 3h2
y)/4 · (x+ 1)− (ht − 3hy)/2 · (x2 − 2x+ 2) + ht

l1 = (h2
t + 3h2

y)/4 · (x3 − x2 + 1) + (ht + 3hy)/2 · (x2 − 2x+ 1) + ht

G2

c′bw,0

l0 = (h2
t + 3h2

y)/4(x+ 1) + (ht + 3hy)/2(x2 − 2x+ 2)− ht
l1 = (h2

t + 3h2
y)/4(x3 − x2 + 1)− (ht − 3hy)/2(x2 − 2x+ 1)− ht

l0 = −(h2
t + 3h2

y)/4(x+ 1)− (ht + 3hy)/2(x2 − 2x+ 2) + ht
l1 = (h2

t + 3h2
y)/4(x3 − x2 − x)− ht(x2 − 2x+ 1)− (ht + 3hy)/2

c′bw,3

l0 = −(h2
t + 3h2

y)/4(x+ 1)− (ht − 3hy)/2(x2 − 2x+ 1)− ht
l1 = (h2

t + 3h2
y)/4(x3 − x2 − x) + (ht + 3hy)/2(x2 − 2x+ 2)− ht

l0 = (h2
t + 3h2

y)/4(x+ 1) + (ht − 3hy)/2(x2 − 2x+ 1) + ht
l1 = (h2

t + 3h2
y)/4(x3 − x2 + 1) + ht(x

2 − 2x+ 1) + (ht + 3hy)/2

Pairing computation: Miller Loop. Assuming an endomorphism of eigenvalue λbw,i =
tbw,i − 1, the formulas are

−x− 1 + (x5 − x4 + 1)(tbw,0 − 1) = −3rbw((x− 1)2(x2 + 1) + 1) (4.26)
x5 − x4 − x+ (x+ 1)(tbw,0 − 1) = −3rbw (4.27)
x+ 1 + (x5 − x4 − x)(tbw,3 − 1) = 3rbw(x− 1)2(x2 + 1) (4.28)
x5 − x4 + 1− (x+ 1)(tbw,3 − 1) = −3rbw (4.29)

and one obtains optimal ate and Tate (a.k.a. twisted ate) pairings from (4.26), (4.29)

mTate=f−(u+1)+(u5−u4+1)λbw,0,P (Q),
mate=f−(u+1)+(u5−u4+1)pbw,0,Q(P ),

mTate=fu5−u4+1−(u+1)λbw,3,P (Q),
mate=fu5−u4+1−(u+1)pbw,3,Q(P ).

Pairing computation: final Exponentiation. Like for BLS12-BW6, the hard part
can be expressed in terms of pbw,i, ht, hy. One obtains two cases. Note that according to
Table 4.5, (h2

t + 32
y)/4 and (ht − hy)/2 are integers. With the parameters of Table 4.9, the

exponent (p2
bw,i − pbw,i + 1)/rbw multiplied by 3(x+ 1) has coefficients of low degree in x

in basis pbw,i. The highest power to compute is u15 due to cbw,i of degree 10 in u. The two
cases have very similar formulas.

(−x5+ x4− 1 + (x+ 1)pbw,0)3(cbw,0+ht) + 9(x4+ 2(−x3+ x2− x+ 1)− pbw,0),
(x(x4− x3− 1) + (x+ 1)pbw,3)3(cbw,3+ht) + 9(x4+ 2(−x3+ x2− x) + 1 + pbw,3).

Similarly based on the works of Hayashida, Hayasaka and Teruya [HHT20] and Cai,
Hu and Zhao [CHZ22], we improve the hard part computation. The exponents of the hard



74 Part II - SNARK-friendly elliptic curves

Table 4.9: Parameters of a BW6 outer curve with a BLS24 inner curve, with x ≡ 1 mod 3.
rbw pbls = (x− 1)2/3(x8 − x4 + 1) + x prime

(x10 − 2x9 + x8 − x6 + 2x5 − x4 + x2 + x+ 1)/3

ζ6 −x9 + 3x8 − 4x7 + 4x6 − 3x5 + 2x3 − 2x2 + x− 1
ζ6 x9 − 3x8 + 4x7 − 4x6 + 3x5 − 2x3 + 2x2 − x+ 2

1/
√
−3 (2x9 − 6x8 + 8x7 − 8x6 + 6x5 − 4x3 + 4x2 − 2x+ 3)/3

tbw,0 −x9 + 3x8 − 4x7 + 4x6 − 3x5 + 2x3 − 2x2 + x 6 | tbw,0

tbw,3 x9 − 3x8 + 4x7 − 4x6 + 3x5 − 2x3 + 2x2 − x+ 3 3 | tbw,3, 2 - tbw,3

ybw,0 (x9 − 3x8 + 4x7 − 4x6 + 3x5 − 2x3 + 2x2 − x)/3
ybw,0 −tbw,0/3 2 | ybw,0

ybw,3 (x9 − 3x8 + 4x7 − 4x6 + 3x5 − 2x3 + 2x2 − x+ 3)/3
ybw,3 tbw,3/3 2 - ybw,3

pbw,0 ((tbw,0 + htrbw)2 + 3(ybw,0 + hyrbw)2)/4 prime
pbw,3 ((tbw,3 + htrbw)2 + 3(ybw,3 + hyrbw)2)/4 prime
Φ6(tbw,i − 1) (x8 − 4x7 + 8x6 − 12x5 + 15x4 − 14x3 + 10x2 − 6x+ 3) · 3 · rbw

cbw,0 (h2
t + 3h2

y)/4rbw + (ht − hy)/2tbw,0 + Φ6(tbw,0 − 1)/(3rbw)− ht
cbw,3 (h2

t + 3h2
y)/4rbw + (ht + hy)/2tbw,3 + Φ6(tbw,3 − 1)/(3rbw)− ht

c′bw,0 (G2) cbw,0 + (ht + 3hy)/2
c′bw,3 (G2) cbw,3 + (ht − 3hy)/2

Optimal ate Miller loop fa0,Q(P ) · fpa1,Q(P ), Optimal twisted ate fa0+a1λ,P (Q)

λ = tbw,0 − 1 a0 = −(x+ 1), a1 = x5 − x4 + 1 a′0 = x5 − x4 − x, a′1 = x+ 1
λ = tbw,3 − 1 a0 = x+ 1, a1 = x5 − x4 − x a′0 = x5 − x4 + 1, a′1 = −(x+ 1)

Final exponentiation
ebw,0 (x+ 1)Φ6(pbw,0)/rbw =

(−x5 + x4 − 1 + (x+ 1)pbw,0)(cbw,0 + ht) + 3(x4 + 2(−x3 + x2 − x+ 1)− pbw,0)
e′bw,0 (x5 − x4 − x)Φ6(pbw,0)/rbw =

((x+ 1) + (x5 − x4 − x)pbw,0)(cbw,0 + ht)− 3(1 + (x4 − 2x3 + 2x2 − 2x+ 1)pbw,0)
ebw,3 (x+ 1)Φ6(pbw,3)/rbw =

(x(x4 − x3 − 1) + (x+ 1)pbw,3)(cbw,3 + ht) + 3(x4 + 2(−x3 + x2 − x) + 1 + pbw,3)
e′bw,3 (x5 − x4 + 1)Φ6(pbw,3)/rbw =

((−x− 1) + (x5 − x4 + 1)pbw,3)(cbw,3 + ht)− 3(1− (x4 − 2x3 + 2x2 − 2x+ 2)pbw,3)
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part of the final exponentiation for BW6-BLS24 curves are the following.

c0 = (x− 1)2(x2 + 1)

(x5 − x4 − x)
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The parameters are given in Tab. 4.9, and we set d = Φ6(ti − 1)/(3r) = x8 − 4x7 +
8x6 − 12x5 + 15x4 − 14x3 + 10x2 − 6x+ 3. Part of the exponent is

h2
t + 3h2

y

4
r +

ht + hy
2

t3 + d

h2
t + 3h2

y

4
r +

ht − hy
2

t0 + d

We compute the exponents r, t0/3, t3/3 and (d− 1)/3 as follows and obtain Alg. 4.5 and
Alg. 4.6.

a = (x− 1)/3
b = a(x− 1)(x2 + 1)
c = b((x− 1)2(x2 + 1) + 1) = (d− 1)/3

f0 = −(x+ 1)c+ b− a = t0/3
g = −(x+ 1)(f0 + b) + a+ 1 = r

a = (x− 1)/3
b = a(x− 1)(x2 + 1)
c = b((x− 1)2(x2 + 1) + 1) = (d− 1)/3
e3 = (x+ 1)c− b+ a
f3 = e3 + 1 = t3/3
g = (x+ 1)(e3 − b) + a+ 1 = r
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Algorithm 4.5: Hard part of final exp.,
BLS24-BW6, t0
Input: x, m, h1 = (ht − hy)/2,

h2 = (h2
t + 3h2

y)/4

Output: m(x5−x4−x)Φ6(p0)/r

1 mp ← mp

2 A← (mu−1
p )u−1

3 A← Au
2+1 .or (Au)u · A

4 A← m · A
5 B ← Au+1 ·mp .mb0

6 A← A2 · A .m−3a0

7 C ← B(u−1)/3

8 D ← Cu−1

9 D ← Du2+1 .or (Du)u ·D
10 E ← (Du−1)u−1

11 E ← Eu2+1 .or (Eu)u · E
12 E ← E ·D .B(d−1)/3

13 F ← Eu+1 · C ·D .Bt0/3

14 G← F ·D
15 H ← Gu+1 · C ·B .Br

16 I ← F d1 · E
17 I ← I2 · I ·B ·Hd2

18 return A · I

Algorithm 4.6: Hard part of final exp.,
BLS24-BW6, t3
Input: x, m, h1 = (ht + hy)/2,

h2 = (h2
t − 3h2

y)/4

Output: m(x+1)Φ6(p3)/r

1 A← (mu−1)u−1

2 A← Au
2+1 .or (Au)u · A

3 A← A ·mp

4 B ← Au+1 ·m .mb3

5 A← A2 · A .m3a3

6 C ← B(u−1)/3

7 D ← Cu−1

8 D ← Du2+1 .or (Du)u ·D
9 E ← (Du−1)u−1

10 E ← Eu2+1 .or (Eu)u · E
11 E ← E ·D .B(d−1)/3

12 D ← D
13 F ← Eu+1 ·D · C
14 G← F ·B .Bt3/3

15 H ← (F ·D)u+1 · C ·B .Br

16 I ← Gd1 · E
17 I ← I2 · I ·B ·Hd2

18 return A · I

BW6 with BN

For completeness, we generalize the 2-chain framework to include BN curves as inner
curves. This rediscovers the BN/BW6 2-chain from the Geppetto paper. Table 4.10 gives
the parameters of a BW6 outer curve with a BN inner curve for any integer x.

Pairing computation: final Exponentiation. A lattice reduction (with Magma on
polynomials) gives the formulas in Tab. 4.10, with the precomputation d = Φ6(ti −
1)/(3r) = 3x(x + 1) + 1. We highlight with an underbrace the similar parts that can be
shared. The sequential steps are t0 = −3x(2d + 1) then r = 2(−xt0 + d)− 1 in Alg. 4.7,
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Table 4.10: Parameters of a BW6 outer curve with a BN inner curve, any integer x.
rbw pbn = 36x4 + 36x3 + 24x2 + 6x+ 1 prime
ζ6 −18x3 − 18x2 − 9x− 1
ζ6 18x3 + 18x2 + 9x+ 2

1/
√
−3 12x3 + 12x2 + 6x+ 1

tbw,0 −18x3 − 18x2 − 9x 9 | tbw,0

tbw,3 18x3 + 18x2 + 9x+ 3 3 | tbw,3

ybw,0 −tbw,0/3 = 6x3 + 6x2 + 3x 3 | ybw,0

ybw,3 tbw,3/3 = 6x3 + 6x2 + 3x+ 1
pbw,0 ((tbw,0 + htrbw)2 + 3(ybw,0 + hyrbw)2)/4 prime
pbw,3 ((tbw,3 + htrbw)2 + 3(ybw,3 + hyrbw)2)/4 prime
Φ6(tbw,i − 1) (9x2 + 9x+ 3) · rbw

cbw,0 (h2
t + 3h2

y)/4rbw + (ht − hy)/2tbw,0 + Φ6(tbw,0 − 1)/(3rbw)− ht
cbw,3 (h2

t + 3h2
y)/4rbw + (ht + hy)/2tbw,3 + Φ6(tbw,3 − 1)/(3rbw)− ht

c′bw,0 (G2) cbw,0 + (ht + 3hy)/2
c′bw,3 (G2) cbw,3 + (ht − 3hy)/2

Optimal ate Miller loop fa0,Q(P ) · fpa1,Q(P ), Optimal twisted ate fa0+a1λ,P (Q)

λ = tbw,0 − 1 a0 = 2x, a1 = 6x2 + 2x+ 1 a′0 = 6x2 + 4x+ 1, a′1 = −2x
λ = tbw,3 − 1 a0 = 6x2 + 2x+ 1, a1 = 2x a′0 = −2x, a′1 = 6x2 + 4x+ 1

Final exponentiation
ebw,0 2xΦ6(pbw,0)/rbw =

(6x2 + 2x+ 1 + 2xpbw,0)(cbw,0 + ht)− (3x+ 1 + pbw,0)
e′bw,0 (6x2 + 4x+ 1)Φ6(pbw,0)/rbw =

(−2x+ (6x2 + 4x+ 1)pbw,0)(cbw,0 + ht) + 1− (3x+ 2)pbw,0

ebw,3 2xΦ6(pbw,3)/rbw =
(−(6x2 + 4x+ 1) + 2xpbw,3)(cbw,3 + ht)− (3x+ 2) + pbw,3

e′bw,3 (6x2 + 2x+ 1)Φ6(pbw,3)/rbw =
(2x+ (6x2 + 2x+ 1)pbw,3)(cbw,3 + ht) + 1 + (3x+ 1)pbw,3
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and t3 = 3(x(2d+ 1) + 1), then r = 2x(t3 + 3x) + 1 in Alg. 4.8.

(2x)
Φ6(p0)

r
=

b0︷ ︸︸ ︷(
1 + 2x (3x+ 1 + p0)︸ ︷︷ ︸

a0

)(h2t+3h2y
4

r + ht−hy
2

t0 + d
)
− (3x+ 1 + p0)︸ ︷︷ ︸

a0

(6x2 + 4x+ 1)
Φ6(p0)

r
=

b′0︷ ︸︸ ︷(
p0 − 2x (1− (3x+ 2)p0)︸ ︷︷ ︸

a′0

)(h2t+3h2y
4

r + ht−hy
2

t0 + d
)

+ 1− (3x+ 2)p0︸ ︷︷ ︸
a′0

(2x)
Φ6(p3)

r
=

b3︷ ︸︸ ︷(
2x (p3 − (3x+ 2))︸ ︷︷ ︸

a3

−1
)(h2t+3h2y

4
r + ht+hy

2
t3 + d

)
+ p3 − (3x+ 2)︸ ︷︷ ︸

a3

(6x2 + 2x+ 1)
Φ6(p3)

r
=

b′3︷ ︸︸ ︷(
2x (1 + (3x+ 1)p3)︸ ︷︷ ︸

a′3

+p3

)(h2t+3h2y
4

r + ht+hy
2

t3 + d
)

+ 1 + (3x+ 1)p3︸ ︷︷ ︸
a′3

Algorithm 4.7: Hard part of final exp.,
BN-BW6, tbn,0

Input: x, m, h1 = (ht − hy)/2,
h2 = (h2

t + 3h2
y)/4

Output: m(2x)Φ6(p0)/r

1 A← mx

2 B ← A2 · A ·m ·mp .ma0

3 A← B

4 B ← (B2)x ·m .mb0

5 C ← (Bx ·B)x

6 C ← C2 · C ·B .Bd

7 D ← (C2 ·B)x

8 D ← D2 ·D .B−t0

9 F ← (Dx · C)2 · F .Br

10 F ← F h2 ·Dh1 · C
11 return F · A

Algorithm 4.8: Hard part of final exp.,
BN-BW6, tbn,3

Input: x, m, h1 = (ht + hy)/2,
h2 = (h2

t + 3h2
y)/4

Output: m(6x2+2x+1)Φ6(p3)/r

1 B ← mp

2 A← Bx

3 A← (A2 · A ·B) ·m .ma′3

4 B ← (A2)x ·B .mb′3

5 C ← Bx

6 D ← C2 · C
7 C ← Dx ·D ·B .Bd

8 E ← (C2 ·B)x ·B
9 E ← E2 · E .Bt3

10 F ← ((E ·D)x)2 ·B .Br

11 F ← F h2 · Eh1 · C
12 return F · A

Two-chains with inner BLS and outer Cocks-Pinch

Section 21 showed that a Brezing–Weng outer curve of embedding degree k = 6 is optimal
with a BLS-12 curve whose prime-order subgroup is about 256 bits long. However BW6 is
no longer optimal with BLS24 over a prime field of about 320 bits: we measure the security
in the finite field Fp6 whose p is roughly 640 bits long to be about 124 bits in Section 4.5.2.
To increase the security in the finite field Fpk , we can increase the size of the prime p thanks
to the choice of lifting co-factors ht, hy, and obtain a p of 672 bits, or we can increase the
embedding degree k, but then the BW construction is no longer available: we move to
the Cocks-Pinch construction. To allow twist optimisation, we focus on k = 8 with D = 1
(quartic twist) and k = 12 with D = 3 (sextic twist). Our Cocks-Pinch curves are similar
to the curves of Guillevic, Masson and Thomé [GMT20] (see also [Mas20, Chapter 5]).
The lifting cofactor idea appeared before in Fotiadis and Konstantinou paper [FK19].
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With the Cocks-Pinch construction of embedding degree not 6, the optimal ate pairing
like for BW6 curves is no longer available because the eigenvalue of the Frobenius endo-
morphism πp on a CP curve E(Fpk) does not have a simple polynomial form modulo the
subgroup order r× = pbls. In other words, there is no k-th root of unity modulo pbls(x) (as
polynomials). However, πp has an eigenvalue (as a scalar integer) modulo r×(u) ∈ Z, and
one can use a lattice basis reduction algorithm (like LLL) to obtain a decomposition with
short scalars ai, of size roughly r1/4

× : a0 + a1p× + a2p
2
× + a3p

3
× = 0 mod r×. This 4-fold

holds for CP8 and CP12 curves as ϕ(8) = ϕ(12) = 4. The optimal ate Miller loop would
be

fa0,Q(P )fpa1,Q(P )fp
2

a2,Q
(P )fp

3

a3,Q
(P )`a0Q,a1πp(Q)(P )`a2πp2 (Q),a3πp3 (Q) .

But the scalars ai are not sparse and none of them is trivial, contrary to [Ver10]. Instead,
we generalize our Alg. 4.2 and obtain Alg. 4.10. Algorithm 4.9 precomputes the data and
Alg. 4.10 computes the pairing, with the formulas (4.11)–(4.14) adapted to the ate pairing
with swapped P and Q and λ = p, and with Ci =

∑
i

cip
i,

f2Ci,Q(P ) = f 2
Ci,Q

(P )`[Ci]Q,[Ci]Q(P ) (4.30)
fCi+pj+pl+pm,Q(P ) = fCi,Q(P )fpj+pl+pm,Q(P )`[Ci]Q,[pj+pl+pm]Q(P )

= fCi,Q(P )`[Ci]Q,[pj+pl+pm]Q(P )`[pj+pl]Q,[pm]Q(P )`[pj ]Q,[pl]Q(P ) (4.31)
fCi+1+p+p2+p3,Q(P ) = fCi,Q(P )f1+p+p2+p3,Q(P )`[Ci]Q,[1+p+p2+p3]Q(P )

= fCi,Q(P )`[Ci]Q,[1+p+p2+p3]Q(P )

·`[1+p]Q,[p2+p3]Q(P )`Q,[p]Q(P )`[p2]Q,[p3]Q(P ) (4.32)

The fpj ,Q(P ) terms are removed [HSV06]. The points [pj]Q, [pj + pl]Q, [pj + pl + pm]Q,
[1+p+p2+p3]Q, lines `[pm]Q,[pn]Q(P ), `[pj+pl]Q,[pm]Q(P ), `[1+p]Q,[p2+p3]Q(P ), and their products,
are precomputed.

On CP8 curves, G1 has an endomorphism φ : (x, y) 7→ (−x,
√
−1y) of eigenvalue

λ ≡ p2 mod r, λ2 ≡ −1 mod r. On CP12 curves, G1 has the same endomorphism as BW6
curves, of eigenvalue λ ≡ p2 mod r. The twisted ate pairing on our CP curves has Miller
loop fλ,P (Q) = fp2,P (Q), and we derive our optimal Tate pairing like for BW6 curves, with
short scalars a0 + a1λ ≡ 0 mod r.

Comparison of BW6, CP8 and CP12 outer curve performances

We reproduce the field arithmetic estimates from [GMT20, EHG20] in Table 4.11 and
the pairing cost estimates in Table 4.12. Parameters of CP8 and CP12 are in Table 4.13,
BW6 are in Table 4.17. We justify our choice of seeds and curve parameters in Section 4.5.
Ate and Tate pairing estimates of our BW6 and CP curves are in Table 4.14. We have
a speed-up of the optimal ate pairing on BW6 curves compared to [EHG20] with the
formula (4.33) with v = u2 − 2u+ 1 for BLS12-BW6 and v = u4 − 2(u3 − u2 + u) + 1 for
BLS24-BW6 because the 2-NAF Hamming weight of the scalar v is lower.

fu+1 = fu+1,Q(P ), mopt. ate = (fu+1)pv,[u+1]Q(P )`p[(u+1)v]Q,−Q(P ) . (4.33)

BW6 curves as outer curves of BLS24 have a pairing faster than CP8 and CP12 curves: a
larger characteristic gives better performances than a larger embedding degree. Assuming
a ratio m704/m640 = 1.25, an ate Miller loop on CP8-632 is 25% slower compared to
BW6-672, but the final exponentiation is 15% faster. A full pairing on CP8 is about 7%
slower, and 59% slower on CP12. BLS24-BW6 has a faster pairing than BLS12-BW6, but
the 2-adicity of BLS24 curves is much smaller.
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Algorithm 4.9: Precomputations of sums of points and lines
Input: P ∈ E(Fp)[r], Q0, Q1, Q2, Q3 ∈ E ′(Fpk/d)[r]
Output: array T of length 15, of precomputed points and lines

1 T ← array of length 15
2 for i = 0 to 3 :
3 T [2i − 1][0]← Qi ; T [2i − 1][1]← 1
4 for 0 ≤ m < n ≤ 3:
5 i← 2m + 2n

6 T [i− 1][0]← T [2m − 1] + T [2n − 1]
7 T [i− 1][1]← `Qm,Qn(P )

8 for 0 ≤ m < n < s ≤ 3:
9 i← 2m + 2n + 2s

10 T [i− 1][0]← T [2m + 2n − 1][0] + T [2s − 1][0]
11 T [i− 1][1]← T [2m + 2n − 1][1] · `Qm+Qn,Qs(P )

12 T [15− 1][0]← T [7− 1][0] + T [8− 1]
13 T [15− 1][1]← T [7− 1][1] · `Q0+Q1+Q2,Q3(P )
14 return T

Algorithm 4.10: Miller loop for optimal ate pairing, Cocks-Pinch
Input: P ∈ G1 = E(Fp)[r], Q ∈ G2 = ker(πp − [p]) ∩ E(Fpk)[r], scalars a0, a1, a2, a3 such

that a0 + a1p+ a2p
2 + a3p

3 = 0 mod r
Output: fa0+a1p+a2p2+a3p3,Q(P )

1 Q0 ← Q; Q1 ← πp(Q); Q2 ← πp2(Q); Q3 ← πp3(Q)
2 for i = 0 to 3:
3 if ai < 0: ai ← −ai ; Qi ← −Qi

4 T ← precomputations(Q0, Q1, Q2, Q3)
5 li ← bits(ai) for 0 ≤ i ≤ 3
6 i← max

0≤j≤3
(len lj)

7 j ← l0,i + 2l1,i + 4l2,i + 8l3,i
8 f ← T [j − 1][1]
9 S ← T [j − 1][0]

10 for i = i− 1 downto 0 :
11 f ← f 2

12 `t ← `S,S(P ); S ← [2]S
13 j ← l0,i + 2l1,i + 4l2,i + 8l3,i
14 if j > 0:
15 Qj ← T [j − 1][0]; `← `S,Qj(P ); S ← S +Qj

16 f ← f · (`t · `)
17 if T [j − 1][1] 6= 1: f ← f · T [j − 1][1]

18 else: f ← f · `t
19 return f
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Table 4.11: Cost from [GMT20, Tab. 6] of mk, sk and ik for field extensions Fpk . Inversions
in Fpik come from i2k = 2mk + 2sk + ik and i3k = 9mk + 3sk + ik. Fp12 , resp. Fp24 always
have a first quadratic, resp. quartic extension, i24 = 2m12 + 2s12 + i12 = 293m + i with
i12 = 9m4 + 3s4 + i4, and for Fp12 , i12 = 2m6 + 2s6 + i6 = 97m+ i with i6 = 9m2 + 3s2 + i2.

k 1 2 3 4 6 8 12 24
mk m 3m 6m 9m 18m 27m 54m 162m
sk m 2m 5m 6m 12m 18m 36m 108m
fk 0 0 2m 2m 4m 6m 10m 22m

scyclo
k − 2s − 4m 6m 12m 18m 54m

ik − i1 0 2m + 2s 9m + 3s 14m 34m 44m 97m 293m
ik, with i1 = 25m 25m 29m 37m 39m 59m 69m 119m 318m

Table 4.12: Miller loop cost in non-affine, Weierstrass model [CLN10,AKL+11]. For 6 | k,
two sparse-dense multiplications cost 26mk/6 whereas one sparse-sparse and one multiplica-
tion cost 6mk/6+mk = 24mk/6. For 4 | k, this is 16mk/4 compared to 6mk/4+mk = 15mk/4.

k D curve DoubleLine
and AddLine

ref SparseM and
SparseSparseM

6 | k −3
Y 2 = X3 + b
sextic twist

3mk/6 + 6sk/6 + (k/3)m
11mk/6 + 2sk/6 + (k/3)m

[AKL+11, §4] 13mk/6

6mk/6

4 | k −1
Y 2 = X3 + ax
quartic twist

2mk/4 + 8sk/4 + (k/2)m
9mk/4 + 5sk/4 + (k/2)m

[CLN10, §4] 8mk/4

6mk/4

Table 4.13: CP8 and CP12 outer curve parameters on top of BLS24-315

outer curve u (ht, hy)
(t− 1)2 + 1

mod r, u
equation Fpk

(bits)
est. DL
in Fpk

BLS24-315-CP8-632 -0xbfcfffff (6,2) – y2 = x3 − x 5056 140
BLS24-315-CP12-630 -0xbfcfffff (1,2) 0 y2 = x3 − 1 7560 166

Table 4.14: Pairing cost estimates on BLS12-BW6, BLS24-BW6, BLS24-CP8, BLS24-CP12
curves. BLS12-BW6 curves use Eq. (4.21) with [EHG20, Alg. 5], and v = u2 − 2u + 1.
BLS24-BW6 curves use Eq (4.27), (4.28) with v = u4 − 2(u3 − u2 + u) + 1.

BLS12-377-BW6-761 BLS12-379-BW6-764
ate fu+1,Q(fu)

p
u2−u−1,[u]Q 7863m768 7653m768

ate fu+1,Q(fu+1)pv,[u+1]Q`
p
(u+1)vQ,−Q 7555m768 7389m768

Tate fu+1+(u3−u2−u)λ,P Alg. 4.2 7729m768 7540m768

Final exp. [EHG20, § 3.3, Tab. 7] 5081m768 –
Final exp. Eq. (4.25) 5195m768 5033m768

BLS24-315-BW6-633 BLS24-315-BW6-672
ate fu+1,Q(fu+1)pv,[u+1]Q`

p
(u+1)vQ,−Q 7285m640 7285m704

Tate fu+1+(u5−u4−u)λ,P Alg. 4.2 6813m640 6813m704

Final exp. 5027m640 5501m704

BLS24-315-CP8-632 BLS24-315-CP12-630
ate fa0+a1p+a2p2+a3p3,Q Alg. 4.10 10679m640 13805m640

Tate fa0+a1λ,P Alg. 4.2 12489m640 15780m640

Final exp. 5835m640 10312m640
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4.5 Implementation and benchmarking

In previous sections, we presented families of SNARK-friendly 2-chains that are suitable
for Groth16 and KZG-based universal SNARKs. These families are composed of BLS12
and BLS24 inner curves and BW6, CP8 and CP12 outer curves. We demonstrated that
the pair family BLS12/BW6 is suitable for recursive Groth16 applications and meets the
best security/performance trade-off. Similarly, we showed that BLS24/BW6 is suitable
for KZG-based universal SNARKs. We also investigated the family pairs BLS24/CP8 and
BLS24/CP12 as more conservative choices and showed that CP8-632 is competitive with
BLS24/BW6-672. BW6-633, CP8 and CP12 are defined over a base field of roughly the
same bit length, and all have a GLV endomorphism, hence performances on G1 are expected
to be the same. On G2, BW6 are always faster because they are defined over the same base
field as G1, contrary to CP curves. For the pairing computation, as discussed in Section 19,
CP8 and CP12 are slower than both choices of BW6. Additionally, multi-pairings (as used
in SNARKs) scale better on BW6 curves (Alg. 4.2) compared to CP8 and CP12. Therefore,
we have chosen to focus our benchmarks on BLS12/BW6 and BLS24/BW6 families of
curves.

In this section, we first present an open-sourced SageMath library to derive these curves
and test our generic formulas. Then, based on additional practical criteria, we recommend
a short list of SNARK-friendly 2-chains. Finally, we implement this short-list in the open-
sourced gnark ecosystem [BPH+22a]. We benchmark the relevant curve operations in G1

and G2, and the pairings, and compare efficiency of all choices in practical Groth16 and
PLONK settings, which is a popular KZG-based universal SNARK. Both schemes are
implemented in gnark and maintained by ConsenSys.

4.5.1 SageMath library: derive the curves

At https://gitlab.inria.fr/zk-curves/snark-2-chains, we present SageMath scripts
to derive all the SNARK-friendly 2-chain families and verify the formulae presented in
sections 4.4.1 and 4.4.2, and the pairing cost estimates of Table 4.14.

4.5.2 Our short-list of curves

For all curves, in addition to SNARK-friendliness and security level λ, we shall consider
the following properties:

• A seed u with low Hamming weight HW(u), allowing fast Miller loops in pairings.

• Isogenies of low degree d from a curve with j-invariant different from 0 and 1728,
allowing use of the “Simplified Shallue-van de Woestijne-Ulas (SSWU)” method for
hashing to the curve [WB19].

• Small integer α relatively prime to r − 1, allowing the use of xα as an S-box in the
algebraic SNARK-hashes (e.g. Poseidon [GKR+21]).

• Small non-residues in Fp, for an efficient tower arithmetic.

• “Spare” bits in Fp, for carries, infinity point or compressed point flag.

• “Spare” bits in Fr, for optimizing the MSM algorithm (cf. Alg. 5.2 in Chapter 5).

https://gitlab.inria.fr/zk-curves/snark-2-chains
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Table 4.15: Seeds of SNARK-friendly inner BLS12 curves around 128 bits of security. λ
denotes the security level, L the minimum of r−1 and p−1 2-adicity, d the isogeny degree
and α the smallest integer coprime to r − 1.
u p (bits) r (bits) λ E(Fp) λ Fp12 2-adicity L d α
0x8508c00000000001 377 253 126 126 47 2 11
-0x7fb80fffffffffff 377 252 126 126 45 2 5
0x9b04000000000001 379 254 127 126 51 2 7
-0xfffbc3ffffffffff 383 256 128 126 43 2 7
-0xfff7c1ffffffffff 383 256 128 126 42 2 7
-0xffc3bfffffffffff 383 256 128 126 47 2 7
0x105a8000000000001 383 257 128 126 52 2 7

Table 4.16: Seeds of SNARK-friendly inner BLS24 curves around 128 bits of security. λ
denotes the security level, L the minimum of r−1 and p−1 2-adicity, d the isogeny degree
and α the smallest integer coprime to r − 1.

u p (bits) r (bits) λ E(Fp) λ Fp24 2-adicity L d α
0x60300001 305 245 122 158 22 2 7
-0x950fffff 311 250 125 159 22 2 7
0x9f9c0001 312 251 125 159 20 2 7
-0xbfcfffff 315 253 126 160 22 2 7
-0xc90bffff 315 254 126 160 20 2 13
0xe19c0001 317 255 127 160 20 2 17
-0x10487ffff 319 257 128 161 21 2 11

For outer curves, an additional property is

• Smallest h2
t + 3h2

y with low Hamming weight, allowing fast final exponentiation.

BLS12/BW6. The security of BLS12-384 and BLS12-448 is explained in [GS21], BLS12-
448 being presented as a more conservative choice: it offers about 132 bits of security in
Fp12 instead of 126 bits. Because a BLS12-448 would imply a much larger BW6-896,
we concentrate on the BLS12 curves of 377 to 383 bits of Table 4.15. Given the above
requirements, we short-list BLS12-377 with u = 0x8508c00000000001 and BLS12-379 with
u = 0x9b04000000000001. The former was proposed in [BCG+20] and used in [EHG20]
and the latter was proposed in [EHG22], of a higher 2-adicity. Both have a HW(u) = 7,
d = 2, α ≤ 7 and tower fields can be constructed as Fp

i2+5−−→ Fp2
v3−i−−→ Fp6

w2−v−−−→ Fp12 .
Now, we construct outer BW6 curves to these inner BLS12 curves. For BLS12-377,

we find BW6-761 to be optimal and refer the reader to [EHG20] for a more detailed
study. For BLS12-379, we restrict the search to curves up to 768 bits and suggest the
corresponding BW6-764 with ht = −23, hy = 3 and equation Y 2 = X3 + 1 (and M-type
twist Y 2 = X3 + 2). Both BW6-761 and BW6-764 fall in the tbw,3 case (Table 4.6).

BLS24/BW6. A BLS24 curve defined over a 320-bit prime field offers 128 bits of
security on the curve thanks to a subgroup of prime order r of 256 bits, and offers around
160 bits in Fp24 . Accordingly, we find the following SNARK-friendly inner BLS24 curves
(Table 4.16). Given all the requirements, we choose BLS24-315 (u = -0xbfcfffff) over
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Table 4.17: BW6 outer curve parameters, where y2 = x3 + b.

outer curve u (ht, hy)
tmod
r, u

b
Fpk
(bits)

est. DL
in Fpk

BLS12-377-BW6-761 0x8508c00000000001 ( 13, 9) 0 −1 4566 126
BLS12-379-BW6-764 0x9b04000000000001 (-25, 3) 0 1 4584 126
BLS24-315-BW6-633 -0xbfcfffff (- 7,-1) 0 4 3798 124
BLS24-315-BW6-672 -0xbfcfffff (0x4dfff8,0) 0 −4 4032 128

Fp of 315 bits and with Fr of 253 bits. It has 2-adicity 22 and security level almost 128.

The tower fields can be constructed as Fp
i2−13−−−→ Fp2

v2−i−−→ Fp4
w2−v−−−→ Fp8

c3−w−−−→ Fp24 .
Now, we construct outer BW6 curves to BLS24-315. First, we search for less conservative

curves over a field of up to 640 bits. We recommend the BW6-633 curve with hy = −7, hy =
−1 and the equation Y 2 = X3 + 4 (and M-type twist Y 2 = X3 + 8). For more conservative
curves offering 128 bits of security, we search for pbw of exactly 672 bits. We recommend
the BW6-672 curve with ht = 5111800, hy = 0 (HW2-NAF(h2

t + 2h2
y) = 8) and equation

Y 2 = X3 − 4 (D-type twist Y 2 = X3 − 4/3). The former falls in the tbw,0 and the latter
in the tbw,3 case.

Estimated complexity of a DL computation in GF(pk)

This section recalls the results from [BD19,GS21,Gui20]. A BLS12 curve with r of about
256 bits has p of about 384 bits. In [GS21, Table 10] the estimated security in Fp12 for
the BLS12-381 curve is 126 bits. Running the tool from [GS21], the paper [EHG20] shows
that BLS12-377 in Fp12 has 125 bits of security, and BW6-761 has 126 bits of security in
Fp6 . With the same approach and the SageMath tool2 from [GS21], our BLS12-379 curve
has 125 bits in Fp12 and our BLS24-315 curve has 160 bits of security in Fp24 .

We observe a notable difference between the BW6 outer curves of BLS12 and BLS24
because of the degree of the polynomial pbw(x). This polynomial is the key-ingredient of
the Special (Tower) NFS [JP14,KB16]. However when its degree is too high, the general
(Tower) NFS performs better, unless a tweak of pbw(x) is possible [Gui20]. This tweak
divides by n the degree of pbw(x) while increasing its coefficients by at most un−1. It
works only if either pbw has an automorphism of degree n, hence the new polynomial has
coefficients as small as the initial one, or the seed u is small enough. Here pbw has no
automorphism, and u is 32 bits long. We obtain a new p̃bw(x) of degree 10 and coefficients
of 40 bits. The lowest estimate of DL cost with STNFS is 2132 with h of degree 6 for
the 633-bit curve (cf. next paragraph for STNFS-security of MNT6 curves). The general
TNFS works slightly better: with h of degree 2, and the Conjugation method (Conj), we
obtain a DL cost estimate of 2124. This is coherent with MNT-6 curve security estimates,
where the same choice of parameters for TNFS apply [GMT20, Fig. 1]. To reach the 2128

cost, we increase pbw up to 672 bits. We stress that the tool we use only gives an estimate,
and recent progress are being made about TNFS [DGP21]. In case of underestimate of
the tool, one can consider a 704-bit BLS24-BW6 curve.

For the Cocks-Pinch construction, the parameters do not have a polynomial form. For
the embedding degree 8 we consider the TNFS-Conj algorithm with h of degree 2 according
to [GMT20, Fig. 2]. We obtain 140 bits of security in Fp8 for the BLS24-315-CP8-632

2SageMath code available at https://gitlab.inria.fr/tnfs-alpha/alpha

https://gitlab.inria.fr/tnfs-alpha/alpha
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Figure 4.1: Estimated cost of DL computation with TNFS in GF(p6).

curve. For the BLS24-315-CP12-630 curve we measure a DL cost of 166 bits in Fp12 with
TNFS-Conj and h of degree 3 for the tower.

STNFS-security of MNT6 curves In [GMT20], Guillevic, Masson and Thomé es-
timated the cost of the Special-Tower Number Field Sieve algorithm (STNFS) and its
variants for MNT6 curves (MNT curves of embedding degree 6) for curve parameters
obtained from PBC library developed by Ben Lynn [Lyn13,Lyn07]. In [GS21], Guillevic
and Singh refined the cost model. We reproduce in Fig. 4.1 the estimated cost of comput-
ing a discrete logarithm in GF(p6) with the Tower NFS algorithm. There is a cross-over
point at p of about 1536 bits from the Conjugation method of polynomial selection, to the
generalisation made by Sarkar–Singh, both with the TNFS algorithm. The crossover point
from TNFS to NFS is at much larger p. In conclusion, to ensure a 128-bit security level in
a field GF(p6), the prime p should be at least 672-bit long. If moreover a Special variant
of NFS or TNFS is available because the prime p has a special form, the size requirement
will be larger, but this is not the case for MNT parameters.

4.5.3 Golang library: implement the short-list curves

At https://github.com/yelhousni/gnark-crypto (gnark-crypto fork), we present an
optimized implementation, with x86-64 assembly code for the finite fields, of the short-
listed curves: BLS12-377, BW6-761, BLS12-379, BW6-764, BLS24-315, BW6-633 and BW6-
672 (Table 4.18). All curve implementations are written in Golang (tested with 1.16 and
1.17 versions) and benefit from Fp and Fr x86-64 assembly accelerated arithmetic. Also,
they benefit from D = 3 endomorphism-based optimizations (GLV and 2-dimensional
GLS scalar multiplication, fast subgroup checks and cofactor clearing). For the pairing, we

https://github.com/yelhousni/gnark-crypto
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Table 4.18: Short-listed curves.
curve, tower fields equation twist equation

BLS12-377, Fp
i2+5−−→ Fp2

v3−i−−→ Fp6
w2−v−−→ Fp12 Y 2 = X3 + 1 Y 2 = X3 + 1/i

BLS12-379, Fp
i2+5−−→ Fp2

v3−i−−→ Fp6
w2−v−−→ Fp12 Y 2 = X3 + 1 Y 2 = X3 + 1/(5+i)

BLS24-315, Fp
i2−13−−−→Fp2

v2−i−−→Fp4
w2−v−−→Fp8

c3−w−−→Fp24 Y 2 = X3 + 1 Y 2 = X3 + 1/i

BLS12-377-BW6-761, Fp
i3+4−−→ Fp3

v2−i−−→ Fp6 Y 2 = X3 − 1 Y 2 = X3 + 4

BLS12-379-BW6-764, Fp
i3−2−−→ Fp3

v2−i−−→ Fp6 Y 2 = X3 + 1 Y 2 = X3 + 2

BLS24-315-BW6-633, Fp
i3−2−−→ Fp3

v2−i−−→ Fp6 Y 2 = X3 + 4 Y 2 = X3 + 8

BLS24-315-BW6-672, Fp
i3−3−−→ Fp3

v2−i−−→ Fp6 Y 2 = X3 − 4 Y 2 = X3 − 4/3

Table 4.19: G1 and G2 scalar multiplication benchmarks.
curve G1 scalar mul. (ns) G2 scalar mul. (ns)
BLS12-377 77606 261607
BLS12-379 81090 272107
BLS24-315 65825 622044
BLS12-377-BW6-761 377360 377360
BLS12-379-BW6-764 390647 390647
BLS24-315-BW6-633 255600 255600
BLS24-315-BW6-672 300929 300929

follow optimizations from [ABLR14,Sco19,GS10,HHT20] and section 4.4.2. Our library
is one of the fastest compared to other open-source libraries in Appendix A [EH].

4.5.4 Benchmarking

In this section, we benchmark our Golang implementation for all short-listed curves on two
levels. First, independently from the context, we benchmark G1, G2 scalar multiplications
(with GLV/GLS acceleration [GLV01,GLS09] and multi-scalar-multiplication (Bucket-list
method [BDLO12, section 4]). Also, we benchmark the pairing computation (Miller loop,
Final exponentiation and total pairing). Then, we benchmark the time to setup, prove
and verify Groth16 and PLONK proofs of circuits with different number of constraints.

The first level benchmarks are run on an AWS z1d.large (3.4 GHz Intel Xeon) and the
second level on a an AWS c5a.24xlarge (AMD EPYC 7R32). This allows to handle large
proofs and to test different architectures. All with hyperthreading, turbo and frequency
scaling disabled.

G1, G2 and GT operations.

G1 coordinates for all short-listed curves are over Fp and use the D = 3 endomorphism to
implement GLV [GLV01]. ForG2, BW6 coordinates are over Fp as well and implement GLV
(D = 3). For BLS12 and BLS24, the implementation uses 2-dimensional GLS [GLS09]
over Fp2 and Fp4 respectively. Timings are reported in Tables 4.19 and 4.20. For multi-
scalar-multiplication, we report timings in figures 4.2 and 4.3 for different sizes (25 to 224

points).
On the one hand, we note that for inner curves BLS24-315 the arithmetic is the fastest
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Figure 4.2: MSM on G1 4.2(a) and G2 4.2(b) for short-listed inner curves.
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Figure 4.3: G1/G2-MSM on short-listed outer curves.

Table 4.20: Pairing computation benchmarks.
curve Miller Loop (ns) Final Exp. (ns) Pairing (ns)
BLS12-377 opt. ate 377191 422157 799348
BLS12-379 opt. ate 383753 453687 837440
BLS24-315 opt. ate 435958 993500 1429458
BLS12-377-BW6-761 opt. ate (Eq. 4.15) 1613306 1099533 2712839
BLS12-377-BW6-761 opt. ate (Eq. 4.33) 1249860 1099533 2349393
BLS12-377-BW6-761 opt. Tate 1249860 1099533 2349393
BLS12-379-BW6-764 opt. ate (Eq. 4.15) 1548546 1057174 2605720
BLS24-315-BW6-633 opt. ate 918724 727918 1646642
BLS24-315-BW6-633 opt. Tate 809503 727918 1537421
BLS24-315-BW6-672 opt. ate 1073268 977436 2050704
BLS24-315-BW6-672 opt. Tate 973630 977436 1951066
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Table 4.21: Cost of Setup, Prove and Verify algorithms for Groth16 and PLONK.
m =number of wires, n =number of multiplications gates, a =number of additions gates
and ` =number of public inputs. MG =multiplication in G and P=pairing.

Setup Prove Verify
Groth16 3n MG1 , m MG2 (3n+m− `) MG1 , n MG2 3 P, ` MG1

PLONK (KZG) d≥n+a MG1 , 1 MG2 9(n+ a) MG1 2 P, 18 MG1

on G1, the slowest on G2 while still competitive on GT (especially for multi-pairings when
the final exponentiation is factored out). Thus, it is suitable for KZG-based SNARKs where
only G1 operations and pairings accounts for the Setup, Prove and Verify algorithms. On
the other hand, BLS12-377 presents the best trade-off on all operations making it suitable
for Groth16 SNARK. For the less conservative choice of outer curve to BLS24-315, namely
BW6-633, a pairing computation is almost as fast as on BLS24-315 and MSMs are the
fastest on all outer curves given the small field size. For the conservative choice, namely
BW6-672, operations on all three groups are reasonably fast and notably faster than on
outer curves to BLS12 (BW6-761 and BW6-764).

Groth16 and PLONK schemes

Based on the analysis in the previous paragraph, here we discard BLS12-379/BW6-764
pair and choose to bench the BLS12-377/BW6-761 and BLS24-315/BW6-633/BW6-762
pairs of curves in the context of Groth16 and PLONK SNARKs. We choose a simple circuit
(proof of exponentiation: aw := b (cf. Fig. 2.1)) to be able to control precisely the number
of constraints. We bench the Setup, Prove and Verify algorithms for both Groth16 and
PLONK schemes and report timings in figures 4.4, 4.5, 4.6, 4.7 and 4.8. The benchmark
is run, this time, on an AWS c5a.24xlarge (AMD EPYC 7R32) to be able to test large
circuits. In table 4.21 we recall the cost of SNARK algorithms in terms of preponderant
groups operations.

Remark 4.3. The maximum number of constraints nmax a circuit can have is different
per SNARK scheme and per curve. For Groth16, nmax = 2L and for PLONK nmax = 2L−2

where L is the 2-adicity of the chosen curve.

It is clear from figures 4.4, 4.5 and 4.8 that BLS12-377 is optimized to setup and
prove Groth16 proofs while BLS24-315 is suitable to setup and prove PLONK proofs
at the cost of acceptably slower verification time. For proof composition, we see from
figures 4.6, 4.7 and 4.8 that the outer curves to BLS24-315, namely BW6-633 and BW6-
672, are faster for all the SNARK algorithms for both Groth16 and PLONK. This confirms
the recommendation of BLS24/BW6 pair of curves for KZG-based SNARK. We should
also note that for applications where one would like to optimize the cost of generating and
proving a proof of several proofs {πi}0≤i≤M at the cost of slow generation of πi (e.g. proof
aggregation by light clients of off-chain generated proofs), one could use the BLS24/BW6
pair for Groth16.
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Figure 4.4: Groth16 Setup (a) and Prove (b) times per number of constraints for inner
curves.
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Figure 4.5: PLONK Setup (a) and Prove (b) times per number of constraints for inner
curves.
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Figure 4.6: Groth16 Setup (a) and Prove (b) times per number of constraints for outer
curves.
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Figure 4.7: PLONK Setup (a) and Prove (b) times per number of constraints for outer
curves.
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Figure 4.8: Groth16 (a) and PLONK (b) Verify times on short-listed curves.



Chapter

5
Multi-Scalar-Multiplication on

SNARK-friendly curves

The bottleneck in the Prove algorithm of most of pairing-based SNARKs is the Multi-
Scalar-Multiplication (MSM) algorithm. In this chapter we give an overview of a variant
of the Pippenger MSM algorithm together with a set of optimizations we proposed. This
chapter, in part, is a reprint of the material as it appears in our submitted work [HB22].
We implemented this work in gnark-crypto as part of our submission to the ZPrize com-
petition (https://www.zprize.io/). We participated in the open division “Accelerating
MSM on Mobile”. This prize focus on minimizing latency of computing MSM in native
mobile applications over the BLS12-377 curve. We achieved an 78% speedup over the
ZPrize baseline implementation, which allowed us to win the first prize.

Outline. Given a set of n elements G1, · · · , Gn (bases) in G a cyclic group whose order
#G has b-bit and a set of n integers a1, · · · , an (scalars) between 0 and #G, the goal is to
compute efficiently the group element [a1]G1 + · · ·+ [an]Gn. In SNARK applications, we
are interested in large instances of variable-base MSMs (n = 107, 108, 109) — with random
bases and random scalars — over the groups G1 and G2.

The naive algorithm uses a double-and-add strategy to compute each [ai]Gi then adds
them all up, costing on average 3/2·b·n group operations (+). There are several algorithms
that optimize the total number of group operations as a function of n such as Strauss [Str64],
Bos–Coster [dR95, Sec. 4] and Pippenger [Pip76] algorithms. For large instances of a
variable-base MSM, the fastest approach is a variant of Pippenger’s algorithm [BDLO12,
Section 4]. For simplicity, we call it the bucket-list method.

5.1 Pippenger variant: the bucket-list method

The high-level strategy is in three steps:
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• Step 1: reduce the b-bit MSM to several c-bit MSMs for some fixed c ≤ b

• Step 2: solve each c-bit MSM efficiently

• Step 3: combine the c-bit MSMs into the final b-bit MSM

Step 1: reduce the b-bit MSM to several c-bit MSMs

1. Choose a window c ≤ b

2. Write each scalar a1, · · · , an in binary form and partition each into c-bit parts

ai = (ai,1, ai,2, · · · , ai,b/c︸︷︷︸
c-bit︸ ︷︷ ︸

b-bit

)2

3. Deduce b/c instances of c-bit MSMs from the partitioned scalars

T1 = [a1,1]G1 + · · ·+ [an,1]Gn

...
Tj = [a1,j]G1 + · · ·+ [an,j]Gn

...
Tb/c = [a1,b/c]G1 + · · ·+ [an,b/c]Gn

Cost of Step 1 is negligible.

Step 3: combine the c-bit MSMs into the final b-bit MSM

Algorithm 5.1: Step 3: combine the c-bit MSMs into the final b-bit MSM
Input: The set {Ti}b/ci=1 output of Step 2
Output: T = [a1]G1 + · · ·+ [an]Gn

1 T ← T1;
2 for i from 2 to b/c:
3 T ← [2c]T ; // Double c times
4 T ← T + Ti; // Add
5 return T ;

Cost of Step 3: (b/c− 1)(c+ 1) = b− c+ b/c− 1 group operations.
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Step 2: solve each c-bit MSM Tj efficiently

1. For each Tj, accumulate the bases Gi inside buckets
Each element ai,j is in the set {0, 1, 2, · · · 2c − 1}. We initialize 2c − 1 empty buckets
(with points at infinity) and accumulate the bases Gi from each Tj inside the bucket
corresponding to the scalar ai,j.

Gk

+
...
+

G2c−k G23

+ +
G7 G15 G19 G2c−k′

+ + +
... +

G4 G3 G18 G1

buckets: 1 2 3 · · · 2c − 1

sum: S1 S2 S3 · · · S2c−1

Cost: n− (2c − 1) = n− 2c + 1 group operations.

2. Combine the buckets to compute Tj
This step is also a c-bit MSM of size 2c− 1 but this time the scalars are ordered and
known in advance S1 + [2]S2 + · · ·+ [2c− 1]S2c−1, thus we can compute this instance
efficiently as follows

S2c−1

+ S2c−1 + S2c−2
...

+ S2c−1 + S2c−2 + · · · + S3 + S2

+ S2c−1 + S2c−2 + · · · + S3 + S2 + S1

[2c − 1]S2c−1 + [2c − 2]S2c−2 + · · · + [3]S3 + [2]S2 + S1

Cost: 2(2c − 2) = 2c+1 − 4 group operations.

Cost of Step 2: n− 2c + 1 + 2c+1 − 4 = n+ 2c − 3 group operations.

Combining Steps 1, 2 and 3, the expected overall cost of the bucket-list method is

Total cost:
b

c
(n+ 2c − 3) + (b− c+ b/c− 1) ≈ b

c
(n+ 2c) group operations.

Remark 5.1 (On choosing c). The theoretical minimum occurs at c ≈ log n and the
asymptotic scaling looks like (b

n

log n
). However, in practice, empirical choices of c yield a

better performance because the memory usage scales with 2c and there are fewer edge cases
if c divides b. For example, with n = 107 and b = 256, we observed a peak performance at
c = 16 instead of c = log n ≈ 23.
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5.2 Our optimizations

Parallelism

Since each c-bit MSM is independent of the rest, we can compute each (Step 2) on a
separate core. This makes full use of up to b/c cores but increases memory usage as each
core needs 2c− 1 buckets (points). If more than b/c cores are available, further parallelism
does not help much because mMSM instances of size n/m cost more than 1 MSM instance
of size n.

Precomputation

When the bases G1, · · · , Gn are known in advance, we can use a smooth trade-off between
precomputed storage vs. run time. For each base Gi, choose k as big as the storage allows
and precompute k points [2c−k]G, · · · , [2c − 1]G and use the bucket-method only for the

first 2c − 1−k buckets instead of 2c − 1. The total cost becomes ≈ b

c
(n+ 2c−k). However,

large MSM instances already use most available memory. For example, when n = 108

our implementation needs 58GB to store enough BLS12-377 curve points to produce a
Groth16 proof. Hence, the precomputation approach yield negligible improvement in our
case.

Algebraic structure

Since the bases G1, · · · , Gn are points in G1 or G2, we can use the algebraic structure of
elliptic curves to further optimize the bucket-list method.

Non-Adjacent-Form (NAF). Given a point Gi = (x, y) ∈ G1 (or G2), on a Weier-
strass curve for instance, the negative −Gi is (x,−y). This observation is well known
to speed up the scalar multiplication [s]Gi by encoding the scalar s in a signed binary
form {−1, 0, 1} (later called 2-NAF — the first usage might go back to 1989 [MO90]).
However, this does not help in the bucket-list method because the cost increases with the
number of possible scalars regardless of their encodings. For a c-bit scalar, we always need
2c − 1 buckets. That is said, we can use the 2-NAF decomposition differently. Instead
of writing the c-bit scalars in the set {0, · · · , 2c − 1}, we write them in the signed set
{−2c−1, · · · , 2c−1 − 1} (cf. Alg. 5.2). If a scalar ai,j is strictly positive we add Gi to the
bucket S(ai,j)2 as usual, and if ai,j is strictly negative we add −Gi to the bucket S|(ai,j)2|.
This way we reduce the number of buckets by half.

Total cost: ≈ b

c
(n+ 2c−1) group operations.

The signed-digit decomposition cost is negligible but it works only if the bitsize of
#G1 (and #G2) is strictly bigger than b. We use the spare bits to avoid the overflow. This
observation was taken into account at the curve design level (cf. Sec. 4.5.2).

Curve forms and coordinate systems. To minimize the overall cost of storage but
also run time, we store the bases Gi in affine coordinates. This way we only need the
tuples (xi, yi) for storage (although we can batch-compress these following [Kos21]) and
we can make use of mixed addition with a different coordinate systems.
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Algorithm 5.2: Signed-digit decomposition
Input: (a0, · · · , ab/c−1) ∈ {0, · · · , 2c − 1}
Output: (a′0, · · · , a′b/c−1) ∈ {−2c−1, · · · , 2c−1 − 1}

1 for i from 0 to b/c− 1:
2 if ai ≥ 2c−1:
3 assert i 6= b/c− 1; // No overflow for the final digit
4 a′i ← ai − 2c; // Force this digit into {−2c−1, · · · , 2c−1 − 1}
5 ai+1 ← ai+1 + 1; // Lend 2c to the next digit
6 else:
7 a′i ← ai
8 return (a′0, · · · , a′b/c−1);

The overall cost of the bucket-list method is
b

c
(n + 2c−1) + (b − c − b/c − 1) group

operations. This can be broken down explicitly to:

• Mixed additions: to accumulate Gi in the c-bit MSM buckets with cost
b

c
(n−2c−1 +1)

• Additions: to combine the bucket sums with cost
b

c
(2c − 3)

• Additions and doublings: to combine the c-bit MSMs into the b-bit MSM with cost
b− c+ b/c− 1

� b/c− 1 additions and

� b− c doublings

For large MSM instances, the dominating cost is in the mixed additions as it scales
with n. For this, we use extended Jacobian coordinates {X, Y, ZZ, ZZZ} (x = X/ZZ, y =
Y/ZZZ,ZZ3 = ZZZ2) trading-off memory for run time compared to the usual Jacobian
coordinates {X, Y, Z} (x = X/Z2, y = Y/Z3) (cf. Table 5.1).

Coordinate systems Mixed addition Addition Doubling
Jacobian 7m + 4s 11m + 5s 2m + 5s
Extended Jacobian 8m + 2s 12m + 2s 6m + 4s

Table 5.1: Cost of arithmetic in Jacobian and extended Jacobian coordinate systems.
m=Multiplication and s=Squaring in the field.

Remark 5.2. In [GW20], the authors suggest to use affine coordinates for batch addi-
tion. That is, they only compute the numerators in the affine addition, accumulate the
denominators and then batch-invert them using the Montgomery trick [Mon87]. An affine
addition costs 3m + 1i (i being a field inversion). For a single addition this is not worth
it as 1i > 7m (= 10m − 3m). If we accumulate L points and batch-add them with cost
3Lm+Li = 6Lm+ 1i (the Montgomery trick costing Li = 3Lm+ 1i), this might be worth
it. Assuming I=Cm, there might be an improvement if we accumulate a number of points
L > C/4. However, we did not observe a significant improvement in our implementation
in gnark-crypto compared to the extended Jacobian approach. This is mainly because C
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is large due the optimized finite field arithmetic in gnark-crypto [gna20]. This means L
should be large requiring more memory and furthermore one needs to implement specialized
batch-addition functions in affine coordinates.

We work over fields of large prime characteristic ( 6= 2, 3), so the elliptic curves in
question have always a short Weierstrass (SW) form y2 = x3 + ax+ b. Over this form, the
fastest mixed addition is achieved using extended Jacobian coordinates. However, there
are other forms that enable even faster mixed additions (cf. Table 5.2).

Form Coordinates system Equation Mixed addition cost
short Weierstrass extended Jacobian y2 = x3 + ax+ b 10m

Jacobi quartics

XXY ZZ,
doubling-oriented XXY ZZ,
XXY ZZR,
doubling-oriented XXY ZZR

y2 = x4 + 2ax2 + 1 9m

Edwards projective,
inverted x2 + y2 = c2(1 + dx2y2) 9m

twisted Edwards extended (XY ZT )
x = X/Z, y = Y/Z, x · y = T/Z

ax2 + y2 = 1 + dx2y2 8m (dedicated)
9m (unified)

twisted Edwards extended (XY ZT )
x = X/Z, y = Y/Z, x · y = T/Z

−x2 + y2 = 1 + dx2y2

(a = −1)
7m (dedicated)
8m (unified)

Table 5.2: Cost of mixed addition in different elliptic curve forms and coordinate systems
assuming 1m = 1s. Formulas and references from [BL22].

It appears that a twisted Edwards (tEd) form is appealing for the bucket-list method
since it has the lowest cost for the mixed addition in extended coordinates. Furthermore,
the arithmetic on this form is complete, i.e. the addition formulas are defined for all inputs.
This improves the run time by eliminating the need of branching in case of adding the
neutral element or doubling compared to a SW form. We show in Lemma 5.1 that all
inner BLS curves (cf. Sec. 4.4.1) admit a tED form.

Lemma 5.1. All inner BLS curves (cf. Sec. 4.4.1) admit a twisted Edwards form ay2+x2 =
1 + dx2y2 with a = 2

√
3 − 3 and d = −2

√
3 − 3 over Fp. If further −a is a square, the

equation becomes −x2 + y2 = 1 + d′x2y2 with d′ = 7 + 4
√

3 ∈ Fp.

Proof. Proposition 4.1 shows that all inner BLS curves are of the form W0,1 : y2 = x3 + 1.
The following map

W0,1 → Ea,d

(x, y) 7→ (
x+ 1

y
,
x+ 1−

√
3

x+ 1 +
√

3
)

defines the curve Ea,d : ay2 + x2 = 1 + dx2y2 with a = 2
√

3− 3 and d = −2
√

3− 3. The
inverse map is

Ea,d → W0,1

(x, y) 7→ (
(1 + y)

√
3

1− y
− 1,

(1 + y)
√

3

(1− y)x
)
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If −a is a square in Fp, the map (x, y) 7→ (x/
√
−a, y) defines from Ea,d the curve E−1,d′

of equation −x2 + y2 = 1 + d′x2y2 with d′ = −d/a = (2
√

3 + 3)/(2
√

3− 3) = 7 + 4
√

3.
These maps work only if

√
3 is defined in Fp, that is 3 is a quadratic residue. This is

always the case in Fp on which an inner BLS curve is defined. Let
(

3

p

)
be 3

p−1
2 mod p, the

Legendre symbol. The quadratic reciprocity theorem tells us that
(

3

p

)(p
3

)
= (−1)

p−1
2 .

We have p ≡ 1 mod 4 from the 2-adicity condition, so
(

3

p

)
=
(p

3

)
. Now

(p
3

)
≡ p

mod 3 which is always equal to 1 for all BLS curves (x ≡ 1 mod 3 and x−1 | p−1). More
generally one can prove that when p = 2 or p ≡ 1 or 11 mod 12 then 3 is a quadratic
residue in Fp. For inner BLS, we have p ≡ 1 mod 3 · 2L with L� 2.

For the arithmetic, we use the formulas in [HWCD08] alongside some optimizations.
We take the example of BLS12-377 for which a = −1:

• To combine the c-bit MSMs into a b-bit MSM we use unified additions [HWCD08,
Sec. 3.1] (9m) and dedicated doublings [HWCD08, Sec. 3.3] (4m + 4s).

• To combine the bucket sums we use unified additions (9m) to keep track of the
running sum and unified re-additions (8m) to keep track of the total sum. We save
1m by caching the multiplication by 2d′ from the running sum.

• To accumulate the Gi in the c-bit MSM we use unified re-additions with some
precomputations. Instead of storing Gi in affine coordinates we store them in a
custom coordinates system (X, Y, T ) where y− x = X, y+ x = Y and 2d′ · x · y = T .
This saves 1m and 2a (additions) at each accumulation of Gi.

We note that although the dedicated addition (resp. the dedicated mixed addition)
in [HWCD08, Sec. 3.2] saves the multiplication by 2d′, it costs 4m (resp. 2m) to check the
operands equality: X1Z2 = X2Z1 and Y1Z2 = Y2Z1 (resp. X1 = X2Z1 and Y1 = Y2Z1).
This cost offset makes both the dedicated (mixed) addition and the dedicated doubling
slower than the unified (mixed) addition in the MSM case. We also note that the conversion
of all the Gi points given on a SW curve with affine coordinates to points on a tEd curve
(also with a = −1) with the custom coordinates (X, Y, T ) is a one-time computation
dominated by a single inverse using the Montgomery batch trick. In proof systems, since
the Gi are points from the proving key σp, this computation can be part of the Setup
algorithm and do not impact the Prove algorithm. If the Setup ceremony is yet to be
conducted, it can be performed directly with points in the twisted Edwards form.

Our implementation in gnark-crypto shows that an MSM instance of size 216 on the
BLS12-377 curve is 30% faster when the Gi points are given on a tEd curve with the
custom coordinates compared to the Jacobian-extended-based version which takes points
in affine coordinates on a SW curve.

Endomorphisms. All the curves studied in this thesis have a j-invariant 0 (or 1728
for CP8). These curves are equipped with fast endomorphisms (cf. Sec. 1.2). On G1, the
endomorphism can help transform a b-bit MSM of size n to a b/2-bit MSM of size 2n

[a1]G1 + · · ·+ [an]Gn = [a1,1]G1 + [a1,2]φ(G1) + · · ·+ [an,1]Gn + [an,2]φ(Gn)



98 Part II - SNARK-friendly elliptic curves

Intuitively, it would seem that these two MSM instances would have similar complexity
but the larger MSM uses less buckets b/2c · (2n + 2c−1) = b/c · (n + 2c−2). The cost of
computing Gi 7→ φ(Gi) is negligible but the cost of scalar decomposition ai 7→ (ai,1, ai,2)
should be taken into account as it involves a Babai rounding (division). However, since
the bucket-list method is not a constant-time algorithm anyway the cost of the scalar
decomposition can be reduced by replacing the division by a right-shift and checking the
sub-scalars bounds at runtime. In fact, we can precompute e = 2m · vi/d (with vi the short
basis vector, d the basis determinant and m > log2(d)) and then at runtime compute
ai · e/2m (right-shift). This increases the bounds on sub-scalars (ai,1, ai,2) by 1 which we
check at runtime before increasing the size of b (not constant-time). We choose m to be
a machine word twice bigger than log2(d) so that we rarely increase the size of b. This is
similar to the idea presented in [CL15] for scalar multiplication.

On G2, higher-dimensional decompositions are available. For example on BLS12 and
CP8, we can have a 4-dimensional decomposition and on BLS24 a 8-dimensional one. On
BW6, only a 2-dimensional decomposition is available as in G1.

Note: when accumulating the bases in a bucket it might happen that we add Gi and
φ(Gi) which costs less than an addition (e.g. Gi + φ(Gi) = −φ2(Gi) for j = 0 curves).
However, empirically, for large MSM instances it is cheaper to do the plain addition than
to check for these cases.

Open question: for Groth16, the same scalars ai are used for both G1 and G2 MSMs.
Is it possible to mutualize a maximum of computations between these two instances?
It seems that moving to a type-2 pairing would allow to deduce the G1 instance from
the G2 one using an efficient homomorphism (the trace map) over the resulting single
point. However, G2 computations would be done on the much slower full extension Fpk .
The pairing, needed for proof verification, would also be moderately slower because of the
anti-trace map.

5.3 Implementation

Submissions to the ZPrize “Accelerating MSM on Mobile” division must run on Android 12
(API level 32) and are tested on the Samsung Galaxy A13 5G (Model SM-A136ULGDXAA
with SoC MediaTek Dimensity 700 (MT6833)). The MSM must be an instance of 216 G1-
points on the BLS12-377 curve. The baseline is the arkworks [ac22] MSM implementation
in Rust (the bucket-list method). Submissions must beat this baseline by at least 10% in
order to be eligible for the prize. We achieved a speedup of 78% (cf. Table 5.3), which
allowed us to win the first prize.

https://github.com/gbotrel/zprize-mobile-harness

The speedup comes from the optimized finite field arithmetic in gnark-crypto com-
pared to arkworks and the algorithmic optimizations discussed in this chapter. However,
the large gap cannot be justified by these facts only. The target device SoC can run 32-bit
and 64-bit instruction sets. However, the stock firmware runs a 32-bit ARM architecture
(armv7) on which the baseline implementation is benchmarked by the ZPrize judges. For
the sake of the competition, we performed a static build targeting a 64-bit ARM archi-
tecture (arm64), which allowed us without a complicated build process to run the 64-bit
code on the target device. We also added ∼ 40 lines of ARM assembly for a small function

https://github.com/gbotrel/zprize-mobile-harness
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Implementation Timing Curve form and
coordinates system Parallelism? Precom-

putation?
2-NAF
buckets?

Endo-
morphism?

Baseline 2309 ms SW
Jacobian (X, Y, Z)

3 7 7 7

Submission 509 ms tEd (a = −1)
Custom (X, Y, T )

3 7 3 7

Table 5.3: Comparison of the ZPrize baseline and the submission MSM instances of 216 G1-points
on the BLS12-377 curve.

in Fp (Butterfly(a, b) → a = a + b; b = a - b). The performance impact was 5%,
as it speeds up a bit the unified (mixed) addition in the tEd form.

For the sake of this chapter, and for a fair comparison, we perform the same architecture
hack on the baseline implementation. We report in Figure 5.1 a comparison of our code to
the baseline. We report timings of several MSM instances of different sizes and with different
curve parameterizations (SW in extended Jacobians vs. tEd (a = −1) in custom/extended
coordinates).

Figure 5.1: Comparison of our MSM code and the ZPrize baseline for different instances
on the BLS12-377 G1 group.
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For the ZPrize MSM instance of size 216 the speed up is 45% with the submitted
tEd-custom version and 33% with the more generic SW-extJac version. For different sizes
ranging from 28 to 218 the speed up is 40-47% with the tEd-custom version and 20-35%
with SW-extJac.





III
Elliptic curves and pairings in SNARKs





Chapter

6
Elliptic curve arithmetic in rank-1 constraint

systems

In this chapter, we introduce the notion of R1CS as a computation model for SNARKs. We
particularly investigate elliptic curve arithmetic as a computation to be proven. This needs
tailored constructions of elliptic curves and optimizations that are specific to the R1CS
model. This chapter, in part, is a reprint of the material as it appears in our published
work [AEHG22].

6.1 Rank-1 constraint system

The first step in SNARK-proving an arbitrary computation is to arithmetize it, that is to
reduce the computation satisfiability to an intermediate representation satisfiability. Many
problems in cryptography can be expressed as the task of computing some polynomials.
Arithmetic circuits are the most standard model for studying the complexity of such
computations.

Arithmetic circuits

An arithmetic circuit A over the field F and the set of variables X = {x0, . . . , xn} is a
directed acyclic graph such that the vertices of A are called gates, while the edges are
called wires. Arithmetic circuits of interest to many SNARKs and most applicable to this
work are those whose gates have two incoming wires and one outcoming wire (cf. Fig. 6.1
for an example).

R1CS

SNARKs, such as [Gro16], express these arithmetic circuits as a set of quadratic con-
straints called Rank-1 Constraint System (R1CS). It consists of two subsets of constraints:
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x 5

⊗

⊗

⊕

⊕

35

x2

x3

x3 + x

x3 + x+ 5

Figure 6.1: Arithmetic circuit encoding the computation x3 + x + 5 = 35 for which the
(secret) solution is x = 3.

multiplication gates and linear constraints in terms of the circuit variables. There are two
kinds of variables in the constraint system: the input secrets vi and the internal inputs
and outputs of the multiplication gates. Each multiplication gate takes two inputs and
outputs their product. The relation for n gates is represented as

~aL ◦ ~aR = ~aO,

where ~aL = (aL,1, . . . , aL,n) is the vector of the first (left) input to each gate, ~aR =
(aR,1, . . . , aR,n) the vector of the second (right) input to each gate and ~aO = (aL,1 ·
aR,1, . . . , aL,n·aR,n) = (aO,1, . . . , aO,n) the vector of the output, also known as the Hadamard
relation. Linear constraints are expressed using a vector of equations that use linear com-
binations of the variables as

~WL ~aL + ~WR ~aR + ~WO ~aO = ~Wv~v + ~c,

where ~WL, ~WR and ~WO are weight vectors applied to the respective inputs and outputs
of the internal variables, ~Wv are weight vectors applied to the inputs variables ~v and ~c is
a vector of constant terms used in the linear constraints.

SNARK-friendly computations

Many SNARK constructions model computations to be proven as R1CS circuits where the
variables are in a field F where the discrete logarithm is hard. In pairing-based SNARKs
the field is chosen to be Fr, where r is the prime subgroup order on the curve. The
number of these variables and particularly the number of multiplication gate variables
determines the prover runtime complexity. For example, Groth16 prover complexity is
dominated by the multi-scalar-multiplications (in G1 and G2) of size n (the number of
multiplication gates). With this in mind, additions and constant-scalar multiplications in
Fr, which are usually expensive in hardware, are essentially free. While more traditional
hardware-friendly computations (e.g. XORing 32-bit numbers) are far more costly in R1CS.
The following two observations, noted in earlier works [KZM+15], are the key to lower the
number of multiplication gates of a SNARK circuit:

• Additions and multiplications by constants in Fr are free;



Chapter 6 - Elliptic curve arithmetic in rank-1 constraint systems 105

• The verification can be sometimes simpler than the forward computation. The
SNARK circuits do not always have to compute the result, but can instead represent
a verification algorithm. For example a multiplicative inversion circuit (1/x ?

= y) does
not have to encode the computation of the inversion (1/x) but can instead consist
of a single multiplication constraint (x · y) on the value provided (precomputed) by
the prover (y) and checks the equality (x · y ?

= 1).

This is basically a computation model where inversions cost (almost) as much as multipli-
cations.

6.2 Elliptic curves inside a SNARK

While SNARKs allow proving general-purpose computations, in many applications these
computations revolve around proving some cryptographic operations such as hashings,
encryptions, key exchanges or signatures. For example, in Zerocash [BCG+14], the au-
thors considered proving the SHA256 hash computation to build a privacy-preserving
cryptocurrency protocol. Zcash (ZEC) is a cryptocurrency that first implemented the Ze-
rocash protocol with many improvements over the years. Among these, they replaced the
SHA256 hash by a variant of the Pedersen hash based on elliptic curves. Gyges [JKS16] and
Hawk [KMS+16] considered proving the RSA encryption for privacy-preserving blockchain
smart contracts. Cinderella [DFKP16] considered proving the validity and compliance
of X.509 certificates by proving the RSA signature verification. Later, CØCØ’s authors
observed that the RSA scheme is not a well suited computation to be proven in a SNARK
and considered replacing it by a hybrid encryption. They first proved an ECDH key
exchange and then a lightweight symmetric encryption (Speck [BSS+13] and Chaskey-
LTS [MMV+14]). More recently, zk-rollups were proposed to solve the scalability problem
of the Ethereum blockchain. A zk-rollup operator validates a batch of transactions by
verifying a proof of the correct verifications of many signatures (e.g. ConsenSys rollup and
Polygon Hermez rollup verify EdDSA signatures on a twisted Edwards curve associated
to BN254).

Which elliptic curve to choose? Some of these computations are elliptic curve based
cryptographic primitives. They require an elliptic curve E0 to express the computation,
independently of the SNARK elliptic curve E to prove the computation. CØCØ’s authors
were the first to propose to construct a customized elliptic curve to efficiently express this
kind of computations.

Proof systems use different models to translate a generic-purpose computation into
an equivalent arithmetized statement. The R1CS (cf. Sec. 6.1) is one of the most used
arithmetization models. A key property of this model is that multiplications, squarings
and inversions have the same cost while additions and subtractions are free. Therefore, an
implementor should express the statement they want to prove with the lowest multiplicative
complexity and, counter-intuitively, they should bear in mind that inversions are not
costly. The arithmetization step takes place in Fr where r is the prime subgroup order
of the SNARK curve, i.e. r | #E. CØCØ constructs a custom curve E0 precisely defined
over that Fr to avoid emulating non-native field operations (cf. Fig. 2.4). Following the
guidelines described when constructing curve25519, the authors proposed the curve E0(Fr)
in Montgomery form y2 = x3 + 126932x2 + x. The group E0(Fr) has order 8 × 251-bit
prime and its quadratic twist has order 4 × 252-bit. Implementing affine-coordinates
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scalar multiplication using this curve is very efficient in the R1CS model. Later, Zcash
engineers proposed the use of a twisted Edwards curve that is more efficient than the
CØCØ Montgomery curve. It was built on top of the BLS12-381 curve and named Jubjub.

Scalar multiplication in R1CS. In fact, conditional statements are costly in R1CS
and one resorts to a double-and-always-add -like algorithm (as in a side-channel resistant
implementation) instead of the classical double-and-add algorithm (Alg. 1.1) to express a
scalar multiplication. At first sight, it would seem that windowed multiplications would
be expensive in this context but it turns out that constant-windowed methods can be
achieved efficiently in R1CS using a twisted Edwards curve. The affine group law on these
curves is complete meaning that one can use a lookup table to select the precomputed
points (xi, yi) or the zero point (x0, y0) = (0, 1) to be added in the algorithm. This is
done through polynomials which vanish at the inputs that are not being selected. The
optimal lookup is a 2-bit input 4-value output loopkup. We show how to perform a 2-bit
windowed scalar multiplication in R1CS in Algorithms 6.2 and 6.1. With this technique our
implementation in gnark costs 3060 constraints for a variable-base scalar multiplication
and 2436 constraints for a fixed-base multiplication.

Algorithm 6.1: Lookup2: 2-bit lookup table in R1CS
Input: bits (b0, b1), and constants (c0, c1, c2, c3)

Output: r =


c0, if b0 = 0, b1 = 0

c1, if b0 = 0, b1 = 1

c2, if b0 = 1, b1 = 0

c3, if b0 = 1, b1 = 1

1 t1, t2 ← temporary variables;
2 (c3 − c2 − c1 + c0)× b1 = t1 − c1 + c0 ; // Gate 1
3 t1 × b0 = t2 ; // Gate 2
4 (c2 − c0)× b1 = r − t2 − c0 ; // Gate 3
5 return r;

Algorithm 6.2: 2-bit windowed scalar multiplication in R1CS
Input: a scalar s and a point P ∈ E0

Output: R = [s]P ∈ E0

1 (b0, · · · , bn−1)← the binary decomposition of s (b0 being the least significant bit and
assuming n is even) ; // This is also a statement to prove

2 R, T ∈ E0; A← [2]P ; B ← A+ P ;
3 Rx ← Lookup2(bn−1, bn−2, 0, Px, Ax, Bx);
4 Ry ← Lookup2(bn−1, bn−2, 1, Py, Ay, By);
5 for bi from bn−3 downto b0, i← i− 2:
6 R← [4]R;
7 Tx ← Lookup2(bi, bi−1, 0, Px, Ax, Bx);
8 Ty ← Lookup2(bi, bi−1, 1, Py, Ay, By);
9 R← R + T ;

10 return R;
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GLV in R1CS. In [MSZ21] Masson et al. performed an exhaustive search of a twisted
Edwards curve defined over the scalar field of BLS12-381 with a small Complex Multiplica-
tion discriminant in order to speed up the scalar multiplication using a fast endomorphism.
They found an isolated curve with the discriminant −D = −8, called Bandersnatch. It
has an efficient degree 2 endomorphism φ ∈ O−8. Given in twisted Edwards form and
projective coordinates, its equation is

φ(x, y, z) = (f(y)h(y), g(y)xy, h(y)xy)

where f(y) = c(z2 − y2), g(y) = b(y2 + bz2) and h(y) = y2 − bz2 with

b = 0x52c9f28b828426a561f00d3a63511a882ea712770d9af4d6ee0f014d172510b4,
c = 0x6cc624cf865457c3a97c6efd6c17d1078456abcfff36f4e9515c806cdf650b3d.

We noted that this curve has a non-square coefficient a = −5, hence the formulas are
incomplete. However, all points at infinity are of even order hence checking that the points
are of the right odd prime order is enough to rule out exceptions [HWCD08, Th. 1]. Our
implementation in gnark costs 2436 constraints for a variable-base scalar multiplication
and 1914 constraints for a fixed-base multiplication while, in [MSZ21], the authors report
2608 constraints for the variable-base case using the arkworks ecosystem.

The key difference is in the implementation of the scalar decomposition in the GLV
method. The sub-scalars are R1CS variables that lie in Fr, so if one of these is negative
it will be reduced modulo r (the SNARK curve subgroup order) and not m (the Bander-
snatch curve subgroup order), resulting in an incorrect computation. We observed that the
short basis determinant in this case is negative and by always Babai-rounding above the
discriminant, we force the first sub-scalar to be negative. On the one hand, we compute
the scalar decomposition outside of the R1CS circuit and only verify it inside — costing
less constraints. On the other hand, we now know in advance which scalar is negative so
we negate the corresponding point instead. However this trick increases the sub-scalars
size bounds by one bit. This might be of independent interest for side-channel resistant
GLV scalar multiplication out-circuit.

All SNARK curves can have an associated twisted Edwards curve but it is unlikely
to find such a curve with a small CM discriminant. In Table 6.1 we gather, for the main
SNARK curves discussed in this thesis, their associated twisted Edwards curve(s). Note
that the multiplication by the curve coefficients is free in the R1CS model as they are
constants with respect to the statement.
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SNARK curve associated twisted Edwards curve
ax2 + y2 = 1 + dx2y2

a = −1? curve order twist cofactor fast endomorphism?
BN254

(Ethereum) 3 8× (251-bit prime) 4 7

BLS12-381 3

(Jubjub) 8× (252-bit prime) 4 7

7(a = −5)
(Bandersnatch) 4× (253-bit prime) 27 · 33 3

BLS24-317 3 8× (250-bit prime) 1 7

BLS12-377 3 4× (251-bit prime) 8 7

BW6-761 3 8× (374-bit prime) 4 7

BLS24-315 3 8× (250-bit prime) 4 7

BW6-633 3 8× (312-bit prime) 4 7

MNT4-753 3 8× (750-bit prime) 4 7

MNT4-298 3 4× (296-bit prime) 8 7

Table 6.1: Main SNARK curves and their associated twisted Edwards curves.
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7
Pairings in rank-1 constraint systems

Bilinear pairings have been used in different cryptographic applications and demonstrated
to be a key building block for a plethora of constructions such as SNARKs. In particular, we
have demonstrated in Chapter 4 that pairing-based SNARKs are suitable for proof recur-
sion through 2-chains of elliptic curves. In this scenario one requires to express efficiently a
pairing computation as a SNARK arithmetic circuit. Other compelling applications such
as verifying Boneh–Lynn–Shacham (BLS) signatures [BLS01] or KZG polynomial commit-
ment opening in a SNARK fall into the same requirement. The implementation of pairings
is challenging but the literature has very detailed approaches on how to reach practical
and optimized implementations in different contexts and for different target environments.
However, to the best of our knowledge, no previous publication has addressed the question
of efficiently implementing a pairing as a SNARK arithmetic circuit.

In this chapter, we consider efficiently implementing pairings in R1CS. We show that
our techniques almost halve the arithmetic circuit depth of the previously best known
pairing implementation on a BLS12 curve, resulting in 70% faster proving time. We also
investigate and implement the case of BLS24 curves. This chapter, in part, is a reprint of
the material as it appears in our submitted work [Hou22].

7.1 Pairings out-circuit

We recall the best algorithms from the literature to implement efficiently a pairing over
two families of elliptic curves BLS12 and BLS24.

7.1.1 Pairings over inner BLS12 and BLS24 curves.

Table 7.1 summarizes the salient parameters of BLS12 and BLS24 curves and Table 7.2
gives the concrete parameters of the curves we suggested in [EHG22] and their security,
namely the BLS12-377 and BLS24-315. Next we will focus on efficient Miller loop com-
putation and final exponentiation from the literature for these curves. The most efficient
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Table 7.1: Polynomial parameters of BLS12 and BLS24 families.
Family k −D ρ r(x) p(x) t(x)
BLS12 12 −3 3/2 x4 − x2 + 1 (x6 − 2x5 + 2x3 + x+ 1)/3 + x x+ 1

BLS24 24 −3 5/4 x8 − x4 + 1
(x10 − 2x9 + x8 − x6 + 2x5−

x4 + x2 + x+ 1)/3
x+ 1

Table 7.2: Security level estimates of BLS12-377 and BLS24-315 curves from [BCG+20,
EHG22], with seeds x377 = 0x8508c00000000001, x315 = −0xbfcfffff,

curve k −D ref r
bits

p
bits

pk

bits
DL cost
in Fpk

BLS12-377, x377 12 -3 [BCG+20] 253 377 4521 2126

BLS24-315, x315 24 -3 [EHG22, Tab. 10] 253 315 7543 2160

pairing on BLS curves is the optimal ate pairing [Ver10] (cf. Sec. 1.2). Given P ∈ G1 and
Q ∈ G2, it consists in computing

e(P,Q) = fx,Q(P )(pk−1)/r

where x is the curve’s seed and k the curve’s embedding degree (12 for BLS12 and 24 for
BLS24). The Miller loop computation (Alg. 1.2) boils down to G2 arithmetic ([2]S and
S +Q), line computations and evaluations in Fpk (`S,S(P ) and `S,Q(P )), squarings in Fpk
(m2) and sparse multiplications in Fpk (m · `). The vertical lines (v[2]S(P ) and vS+Q(P ))
are ignored because eliminated later by the final exponentiation (k = 12 or 24 is even).
These operations are best optimized following [ABLR14] for a single pairing and [Sco19]
for a multi-pairing.

Fpk towering and arithmetic. The extension field Fpk can be constructed in different
ways. A pairing-friendly towering is built using a sequence of quadratic and cubic extension
fields. An appropriate choice of irreducible polynomials is recommended to efficiently
implement Karatsuba [KO63] and Chung–Hasan formulas [CH07]. The tower Fp12 can be
built as

Fp
u2−α−−−→ Fp2

v3−β−−−→ Fp6
w2−γ−−−→ Fp12 or Fp

u2−α−−−→ Fp2
v2−β−−−→ Fp4

w3−γ−−−→ Fp12 .

Both options have Fp2 as a sub-field, needed to compressG2 coordinates. The arithmetic
on the first option is usually slightly faster while the second one allows a better compression
ratio (1/3 instead of 1/2) for GT elements via XTR or CEILIDH [Sta21] (instead of Lucas
or T2 [Sta21]). The tower Fp24 can be built as

Fp
u2−α−−−→ Fp2

v2−β−−−→ Fp4
w3−γ−−−→ Fp12

i2−δ−−→ Fp24 or Fp
u2−α−−−→ Fp2

v2−β−−−→ Fp4
w2−γ−−−→ Fp8

i3−δ−−→ Fp24 .

The same remarks apply to the towering options here, this time with Fp4 as the sub-field
needed to compress G2 coordinates for BLS24.
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G2 arithmetic and line evaluations. It was shown in [CLN10, AKL+11, GAL+13,
ABLR14] that the choice of homogeneous projective coordinates is advantageous at the 128-
bit security level. This is due to the large inversion/multiplication ratio and the possibility
to maximize the shared intermediate computations between the G2 arithmetic and the line
evaluations. In [ABLR14], the authors also suggest to multiply the line by w3 (in case of Fp12
towering for instance) which is eliminated later by the final exponentiation. This is to obtain
a fast sparse multiplication by the lines. Given S = (XS, YS, ZS) ∈ G2

∼= E ′[r](Fpk/d), the
derived formulas are

X[2]S = XSYS(Y 2
S − 9b′Z2

S)/2; Y[2]S = ((Y 2
S + 9b′Z2

S)/2)2 − 27b′Z4
S; Z[2]S = 2Y 3

SZS .

When the curve has a D-type twist given by the twisting isomorphism ψ : E ′(Fpk/d) →
E(Fpk), the tangent line evaluated at (xP , yP ) can be computed with

g[2]ψ(S)(P ) = −2YSZS · yP + 3X2
S · xPw + (3b′Z2

S − Y 2
S )w3 .

Similarly, if S = (XS, YS, ZS) and Q = (xQ, yQ) ∈ E ′(Fpk/d) are points in homogeneous
projective and affine coordinates, respectively, one can compute the mixed addition S+Q
as follows

XS+Q = λ(λ3 + ZSθ
2 − 2XSλ

2); YS+Q = θ(3XSλ
2 − λ3 − ZSθ2)− YSλ3; ZS+Q = ZSλ

3

where θ = YS − yQZS and λ = XS − xQZS. In the case of a D-type twist for example, the
line evaluated at P = (xP , yP ) can be computed with

gψ(S+Q)(P ) = −λyP − θxPw + (θx2 − λy2)w3 .

For multi-pairings
n−1∏
i=0

e(Pi, Qi), one can share the squaring m2 ∈ Fpk between the different

pairs. Scott [Sco19] further suggested storing and then multiplying together the lines `
2-by-2 before multiplying them by the Miller loop accumulator m. This fully exploits any
sparsity which may exist in either multiplicand.

The final exponentiation. After the Miller loop, an exponentiation in Fpk to the fixed
(pk − 1)/r is necessary to ensure the output uniqueness of the (optimal) ate (and Tate)
pairings. For BLS curves, many works have tried to speed this computation up by applying
vectorial addition chains or lattice-based reduction approaches [HHT20,AFK+13,GF16].
It is usually divided into an easy part and a hard part, as follows:

pk − 1

r
=

pk − 1

Φk(p)︸ ︷︷ ︸
easy part

· Φk(p)

r︸ ︷︷ ︸
hard part

(7.1)

= (pd − 1)

∑e−1
i=0 p

id

Φk(p)︸ ︷︷ ︸
easy part

· Φk(p)

r︸ ︷︷ ︸
hard part

where Φk is the k-th cyclotomic polynomial and k = d · e. For BLS12 and BLS24 curves
(d = 6, and k = 12 resp. k = 24), the easy part happens to be (pk/2 − 1)(pk/d + 1). It is
made of Frobenius powers, two multiplications and a single inversion in Fpk . The most



112 Part III - Elliptic curves and pairings in SNARKs

efficient algorithms for the hard part stem from [HHT20], which we suggest to implement
as in Alg. 7.1 and Alg. 7.2 (3 · Φk(p)/r).

Algorithm 7.1: Final exp. hard part
for BLS12 curves.
Input: m = fx,Q(P ) ∈ Fp12
Output: m3·Φ12(p)/r ∈ GT

1 t0 ← m2

2 t1 ← mx // exp. by the fixed seed x

3 t2 ← m̄ // conjugate

4 t1 ← t1 · t2
5 t2 ← tx1
6 t1 ← t̄1
7 t1 ← t1 · t2
8 t2 ← tx1
9 t1 ← tp1 // Frob.

10 t1 ← t1 · t2
11 m← m · t0
12 t0 ← tx1
13 t2 ← tx0
14 t0 ← tp

2

1 // Frob. square

15 t1 ← t̄1
16 t1 ← t1 · t2
17 t1 ← t1 · t0
18 m← m · t1
19 return m

Algorithm 7.2: Final exp. hard part
for BLS24 curves.
Input: m = fx,Q(P ) ∈ Fp24
Output: m3·Φ24(p)/r ∈ GT

1 t0 ← m2

2 t1 ← mx // exp. by the fixed seed x

3 t2 ← m̄ // conjugate

4 t1 ← t1 · t2
5 t2 ← tx1
6 t1 ← t̄1
7 t1 ← t1 · t2
8 t2 ← tx1
9 t1 ← tp1 // Frob.

10 t1 ← t1 · t2
11 m← m · t0
12 t0 ← tx1
13 t2 ← tx0
14 t0 ← tp

2

1 // Frob. square

15 t2 ← t0 · t2
16 t1 ← tx2
17 t1 ← tx1
18 t1 ← tx1
19 t1 ← tx1
20 t0 ← tp

4

2 // Frob. quad

21 t0 ← t0 · t1
22 t2 ← t̄2
23 t0 ← t0 · t2
24 m← m · t0
25 return m;

Since the elements are in a cyclotomic subgroup after the easy part exponentiation, the
squarings are usually implemented using the Granger–Scott method [GS10]. The dominat-
ing cost of the hard part is the exponentiation to the fixed seed m 7→ mx which is usually
implemented with a short addition chain of plain multiplications and cyclotomic squarings.
Further savings, when the seed is even [GF16], do not apply to inner BLS because the
seed is always odd (x ≡ 1 mod 3 · 2L).

7.1.2 Torus-based cryptography

An algebraic torus is a type of commutative affine algebraic group that we will need in
optimizing the pairing computation in R1CS. Here we give a basic definition and some
useful results from [RS03] and [NBS08].

Definition 7.1. The norm of an element α ∈ Fpk with respect to Fp is defined as NF
pk
/Fp =
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ααp · · ·αpk−1

= α(pk−1)/(p−1). For a positive integer k and a subfield F ⊂ Fpk , the torus is

Tk(Fp) =
⋂

Fp⊆F⊂Fpk

ker(NF
pk
/F )

In this case, F = Fpd for d | k and NF
pk
/F
pd

= α(pk−1)/(pd−1). Thus, equivalently, we have

Tk(Fp) = {α ∈ Fpk |α(pk−1)/(pd−1) = 1} and |Tk(Fp)| = Φk(p) .

Lemma 7.1 ( [NBS08, Lemma 1]). Let α ∈ F∗pk , then α
(pk−1)/Φk(p) ∈ Tk(Fp) .

Lemma 7.2 ( [NBS08, Lemma 2]). d | k =⇒ Tk(Fp) ⊆ Tk/d(Fpd) .
Corollary 7.1. After the easy part of the final exponentiation in the pairing computation
(Eq. 7.1), elements are in the torus Tk(Fp) and thus in each torus Tk/d(Fpd) for d | k,
d 6= k.

7.1.3 T2 cryptosystem

After the easy part of the final exponentiation the elements are in a proper subgroup of
Fpk that coincides with some algebraic tori as per Corollary 7.1. Rubin and Silverberg
introduced a torus-based cryptosystem in [RS03], called T2.

Let q = pk/2 (q odd) and Fq2 = Fq[w]/(w2−γ). Let Gq,2 = {m ∈ Fq2|mq+1 = 1}, which
means that if m = m0 +wm1 ∈ Gq,2 then m2

0−γm2
1 = 1. This norm equation characterizes

the cyclotomic subgroup where the result of the easy part lies. When m1 = 0, then m0

must be 1 or −1. The authors define the following compression/decompression maps on
Gq,2 \ {−1, 1}

Compress ζ : Gq,2 \ {−1, 1} → F∗q

m 7→ 1 +m0

m1

= g;

Decompress ζ−1 : F∗q → Gq,2 \ {−1, 1}

g 7→ g + w

g − w
.

In T2-cryptography, one compresses Gq,2 \ {−1, 1} elements into F∗q (half their size)
using ζ and performs all the arithmetic in F∗q without needing to decompress back into
Gq,2 (ζ−1). Given g, g′ ∈ F∗q where g 6= −g′, one defines the multiplication as

Multiply (g, g′) 7→ g · g′ + γ

g + g′
.

One can derive other operations in compressed form such as

Inverse g 7→ −g;

Square g 7→ 1
2
(g + γ/g);

Frobenius map g 7→ gp
i

γ(pi−1)/2
.
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7.2 Pairings in-circuit

In subsection 7.1, we presented results from the literature that yield the most efficient
pairing computation on BLS12 and BLS24 curves. Porting these results mutatis-mutandis
to the R1CS model would result in a circuit of approximately 80000 multiplication gates
in the case of the BLS12-377 curve. Here, we present an algorithm and implementation
that yield the smallest number of constraints so far in the literature (around 11500 for the
BLS12-377 curve). In the sequel, we will denote by C the number of multiplication gates
and take mainly the example of a BLS12 curve.

7.2.1 Miller loop

G2 arithmetic. Since inversions cost almost as much as multiplications in R1CS, it is
better to use affine coordinates in the Miller loop. Over Fp (base field of the inner BLS12
which is the SNARK field of the outer BW6 curve), an inversion 1/x = y costs 2C. First
1C for the multiplication x · y where y is provided as an input and then 1C for the equality
check x · y ?

= 1. For division, instead of computing an inversion and then a multiplication
as it is custom, one would compute directly the division in R1CS. The former costs 3C
while the later costs 2C as for x/z = y =⇒ x

?
= z · y. A squaring costs as much as a

multiplication over Fp (x = y).
The same observations work over extension fields Fpe except for squaring where the

Karatsuba technique can be specialized. For example over Fp2 , a multiplication costs 3C,
a squaring 2C, an inversion and a division 5C (2C for the equality check).

Point doubling and addition in affine coordinates is as follows:

Double: [2](xS, yS) = (x[2]S, y[2]S)

λ = 3x2
S/2yS

x[2]S = λ2 − 2xS

y[2]S = λ(xS − x[2]S)− yS

Add : (xS, yS) + (xQ, yQ) = (xS+Q, yS+Q)

λ = (yS − yQ)/(xS − xQ)

xS+Q = λ2 − xS − xQ
yS+Q = λ(xQ − xS+Q)− yQ

For BLS12 curves, G2 coordinates are over Fp2 and Table 7.3 summarizes the cost of
G2 arithmetic in R1CS. Note that a doubling is more costly in R1CS than an addition

Table 7.3: G2 arithmetic cost in R1CS over Fp2
Div (5C) Square (2C) Mul (3C) total

Double 1 2 1 12C
Add 1 1 1 10C

because the tangent slope λ requires a squaring and a division instead of just a division.
The Miller functions parameter is constant — the seed-x for BLS. Counter-intuitively
in this case, we generate a short addition chain that maximizes the number of additions
instead of doublings using the addchain Software from McLoughlin: https://github.
com/mmcloughlin/addchain.

It turns out we can do better: when the seed x bit is 1, a doubling and an addition
[2]S + Q (22C) is computed but instead we can compute (S + Q) + S which costs 20C.
Moreover, we can omit the computation of the y-coordinate of S +Q as pointed out in a

https://github.com/mmcloughlin/addchain
https://github.com/mmcloughlin/addchain
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different context in [ELM03].

Double-and-Add : [2](xS, yS) + (xQ, yQ) = (x(S+Q)+S, y(S+Q)+S)

λ1 = (yS − yQ)/(xS − xQ)

xS+Q = λ2
1 − xS − xQ

λ2 = −λ1 − 2yS/(xS+Q − xS)

x(S+Q)+S = λ2
2 − xS − xS+Q

y(S+Q)+S = λ2(xS − x(S+Q)+S)− yS

which costs 17C in total (2 Div, 2 Square and 1 Mul).

Line evaluations. For BLS12, a line ` in Fp2 is of the form ay + bx + c = 0. In the
Miller loop, we need to compute the lines that go through the untwisted G2 points [2]S
and S + Q and to evaluate them at P ∈ G1. That is, `ψ([2]S)(P ) and `ψ(S+Q)(P ) where
ψ : E ′(Fp2)→ E(Fp12) is the untwisting isomorphism. Following [ABLR14], both lines are
sparse elements in Fp12 of the form ayP + bxP · w + c · w3 with a, b, c ∈ Fp2 . In R1CS, we
precompute 1/yP and xP/yP for 1C each and represent the lines by 1+b′xP/yP ·w+c′/yP ·w3.
This does not change the final result because 1/a is in a proper subfield of Fpk . A full
multiplication in Fp12 costs 54C and a sparse multiplication as in [ABLR14] costs 39C,
while with this representation it costs only 30C with a single 2C precomputation.

We adapt the “G2 arithmetic and line evaluations” formulas from the previous section
(pairing out-circuit) to the affine setting together with the optimizations in this section.

Let S = (xS, yS), Q = (xQ, yQ) ∈ G2
∼= E ′[r](Fpk/d) and P = (xP , yP ) ∈ E[r](Fp). For

a D-type twist, in the double step, the tangent line to S evaluated at P is computed with

g[2]ψ(S)(P ) = 1− λ · xP/yPw + (λxS − yS)/yP · w3

where λ = 3x2
P/2yP .

In the double-and-add step, the line through S and Q evaluated at P is computed with

gψ(S+Q)(P ) = 1− λ1 · xP/yPw + (λ1xS − yS)/yP · w3

and the line through S +Q and S is computed with

gψ((S+Q)+S)(P ) = 1− λ2 · xP/yPw + (λ2xS − yS)/yP · w3

where λ1 = (yQ − yS)/(xQ − xS) and λ2 = −λ1 − 2yS/(xS+Q − xS).

Fpk towering and arithmetic. For the towering of Fp12 , we choose the option where
Fp12 is a quadratic extension of Fp6 to be able to use T2 arithmetic as we will show later.
The arithmetic costs in terms of constraints are summarized in Table 7.4.

Table 7.4: Fp12 arithmetic cost in R1CS
Mul Square Div sparse Mul

Fp12 54C 36C 66C 30C
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7.2.2 Final exponentiation

Easy part. The easy part (Eq. 7.1) consists in raising the Miller loop output m ∈ Fp12
to the power (p6 − 1)(p2 + 1), which is usually implemented as follows

t ← m̄ (0C)
m ← 1/m (66C)
t ← t ·m (54C)

m ← tp
2

(0C)
m ← t ·m (54C)

where t ∈ Fp12 is a temporary variable. The conjugate m̄ and the Frobenius map tp
2

are essentially free because they only involve multiplications by constants. We further
merge the inversion (66C) and the multiplication (54C) in a division operation (66C). The
total cost is 120C instead of 174C.

Hard part. The most efficient implementation is described in Alg. 7.1. Only the mul-
tiplications and cyclotomic squarings increase the number of constraints. Squarings in
cyclotomic subgroups are well studied in the literature and in Table 7.5 we give the best
algorithms in the R1CS model. It can be seen that for a single square or two squares
in a row, Granger-Scott algorithm [GS10] is preferred while compression-based methods
are better for other cases. For 3 squares in a row the SQR12345 variant of the Karabina
method [Kar13] is preferred while for more than 4 the SQR234 variant yields the small-
est number of constraints. Usually, out-circuit, we would use the Granger-Scott method
because of the inversion cost in the decompression due to Karabina method but in R1CS
inversions are not costly.

Table 7.5: Squaring costs in the cyclotomic subgroup of Fp12 in R1CS
Compress Square Decompress

Karatsuba + Chung–Hasan 0 36C 0
Granger-Scott [GS10] 0 18C 0

Karabina [Kar13]
(SQR2345) 0 12C 19C

Karabina [Kar13]
(SQR12345) 0 15C 8C

T2 arithmetic. Corollary 7.1 states that after the easy part of the final exponentiation,
the result lies in T2(Fp6) and thus T2 arithmetic can be used to further reduce the number
of constraints in the hard part. We first compress the element, use squarings and multi-
plications in the compressed form and finally decompress the result following the cost in
Table 7.6. The T2 formulas are well defined over Gq,2 \ {−1, 1} but for pairings we only
consider Gq,2 \{1} as both exception values are mapped to 1 after the final exponentiation.
We can even get rid of the one-time cost of compression and decompression. First, the
decompression is not needed as the applications we are interested in do not require the
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Table 7.6: T2 arithmetic cost in R1CS.
Compress Square Mul Decompress

T2 24C 24C 42C 48C

exact value of the pairing but just to check a multi-pairing equation, i.e.
n−1∏
i=0

e(Pi, Qi)
?
= 1.

In this case, the equality check can be performed in the compressed form costing even
less constraints (kC vs. k/2C). For the compression, it can be absorbed in the easy part
computation as it was shown in [NBS08]. Let m = m0 + wm1 ∈ Fp12 be the Miller loop
result. We do not consider the exception case m = 1 as this would mean that the points
are co-linear which is not the case for pairs correctly in G1 and G2 (we assume this is
verified out-circuit). The easy part is m(p6−1)(p2+1) where

mp6−1 = (m0 + wm1)p
6−1

= (m0 + wm1)p
6

/(m0 + wm1)

= (m0 − wm1)/(m0 + wm1)

= (−m0/m1 + w)/(−m0/m1 − w)

which means ζ(m(p6−1)) = −m0/m1. Hence we can absorb the T2 compression cost when
carrying this the exponentiation to p6 − 1 and continue with the exponentiation to p2 + 1
in the compressed form

ζ(m(p6−1))p
2+1 = (−m0/m1)p

2+1

= (−m0/m1)p
2︸ ︷︷ ︸

T2-Frobenius map

·(−m0/m1)

︸ ︷︷ ︸
T2-Multiply

This costs only 60C in comparison of 120C previously. In [NBS08], the authors noted that
one can perform the whole Miller loop in T2. The original motivation was to compress
the computation for constrained execution environments but in our case the motivation
would be to benefit from the T2 arithmetic that costs less R1CS constraints than the plain
computation. However, having to deal with the exception case m = 1 separately is very
costly in R1CS. In fact, conditional statements are carried through polynomials which
vanish at the inputs that are not being selected. As an example, we showed in Chapter 6
(Alg. 6.1) how to perform a 2-input (bits) 1-output conditional statement in R1CS. This
is a constant 2-bit lookup table that costs 3C. This technique can be applied for larger
window tables, but the multiplicative depth of the evaluation increases exponentially. For
the m = 1 ∈ Fp12 conditional statement, we need at least a 6-bit lookup table to check
that m1 = 0 ∈ Fp6 , making this idea not worth investigating further.

7.3 Implementation and benchmark

To the best of our knowledge, there are only two implementations of pairings in R1CS.
One in libsnark [BSCT+b] for MNT4 and MNT6 curves and one in arkworks [ac22] for
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the BLS12-377 curve. The first one was written in C++ language and used previously in
the Mina blockchain but is now obsolete as these MNT4/6 curves are quite inefficient at
the 128-bit security level. The second one is in Rust language and corresponds exactly to
the problem we investigate in this chapter. It uses a BW6-761 curve to SNARK-prove an
optimal ate pairing over BLS12-377 in more than 19000 constraints.

We choose to implement our work in Go using our open-source gnark ecosystem [BPH+22a].
We both implement a pairing over BLS12-377 in a BW6-761 SNARK circuit and a BLS24-
315 in a BW6-633 SNARK circuit. For this, we make use of all ideas discussed in this paper
to implement finite field arithmetic in Fp2 ,Fp4 ,Fp6 ,Fp12 and Fp24 , G1 and G2 operations
and optimal ate pairings on BLS12 and BLS24. Moreover, as applications, we implement
and optimize circuits for Groth16 [Gro16] verification, BLS signature verification and
KZG polynomial commitment opening. Tables 7.7 and 7.8 give the overall cost of these
circuits in terms of number of constraints C, which is almost half the best previously known
implementation cost.

Table 7.7: Pairing cost for BLS12-377 and BLS24-315 in R1CS.
Miller loop Final exponentiation total

arkworks (BLS12-377) ≈ 6000C ≈ 13000C ≈ 19000C
gnark (BLS12-377) 5519C 6016C 11535C
gnark (BLS24-315) 8132C 19428C 27608C

Table 7.8: Pairing-based circuits costs in R1CS for BLS12-377 and BLS24-315.
Groth16 verif. BLS sig. verif. KZG poly. commit.

gnark (BLS12-377) 19378C 14888C 20691C
gnark (BLS24-315) 40275C 32626C 57331C

Note that the BLS signature verification circuit excludes the hash-to-curve cost and
that the KZG circuit needs a scalar multiplication in G2 which we implement in 3.5C per
bit of the scalar following [BGH19, Sec. 6.2 - Alg. 1] using the D = 3 endomorphism φ in
R1CS (cf. Alg. 7.3).

Algorithm 7.3: Endomorphism-based scalar multiplication in Weierstrass form in R1CS.
Input: E defined over Fp, m > 0, P ∈ E(Fp) \ O
Output: [m]P ∈ E

1 Write m in binary expansion m =
n−1∑
i=0

bi2
i where bi ∈ {0, 1}

2 R← [2](P + φ(P ))
3 for i = n/2− 1 dowto 0:
4 if b2i+1 = 0:
5 Si ← [2b2i − 1]P
6 else:
7 Si ← φ([2b2i − 1]P )
8 R← (R + Si) +R

9 return R
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Timings

The number of constraints is independent of the choice of a programming language and
the usual software concerns. However, to better highlight the consequence of this work, we
report in Figure 7.1 timings of the Groth16 Prove algorithm corresponding to a single pair-
ing, multi-pairings and pairing-based circuits on a AMD EPYC 7R32 AWS (c5a.24xlarge)
machine.

We use the groth16 implementation in our open-source library gnark [BPH+22a] where
we implemented the pairing circuits for BLS12-377 and BLS24-315. We run the benchmark
with hyperthreading, turbo and frequency scaling disabled.
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Figure 7.1: Groth16 number of constraints (a) and proving times (b) for multi-pairings on
BLS12-377 and BLS24-315 curves.
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Summary

Business runs on information. The faster it’s received and the more accurate it is, the
better. Blockchain is ideal for delivering that information because it provides immediate,
shared and completely transparent information stored on an immutable ledger that can
be accessed only by permissioned network members. A blockchain network can track
orders, payments, accounts, production and much more. And because members share
a single view of the truth, you can see all details of a transaction end to end, giving
you greater confidence, as well as new efficiencies and opportunities. Many have likened
the revolutionary possibilities of blockchain technology to those of the internet, such is
its perceived capacity to transform the ways in which people and businesses cooperate.
However this technology still, to some extent, suffers from privacy and scalability issues.

How can these issues in blockchain networks be overcome? By default, blockchains
allow tracing the transaction history of users. They furthermore are slow and have a low
throughput, i.e., the number of transactions per second is typically less than 100. Solutions
for privacy include transaction mixing and cryptographic means that hide transaction
information. Scalability solutions either change the consensus algorithm of the blockchain
or move transactions off-chain, i.e., provide mechanisms for conducting transactions that
are not recorded on the blockchain while maintaining almost the same level of security. To
address this dilemma zero-knowledge proof systems and in particular zk-SNARKs have
shown to be a key solution. They provide a computationally sound proof, cheap to verify
and small compared to the size of the statement or the witness. Instead of publishing an
expensive computation on the blockchain, a party publishes a zero-knowledge SNARK
proof of the correct execution of that computation. This solves both the privacy issue and
the scalability issue.

Pairing-based SNARKs are the most efficient proof systems with respect to the suc-
cinctness property. Furthermore, this property makes them good candidates for recursive
proof composition. A recursive proof is a proof made by a prover that convinces a verifier
that other proofs made by other provers have been correctly verified by the prover. This
would allow a single proof to inductively attest to the correctness of many former proofs,
yielding even more scalable blockchains.

In this dissertation, we investigated the arithmetic of recursive pairing-based proof sys-
tems. We presented a study at three stages of the process: curves to instantiate a SNARK
(Chapter 3), curves to instantiate a recursive SNARK (Chapter 4), and also curves to
express an elliptic-curve related statement (Chapter 6). We provided new constructions of
curves for SNARKs and new families of 2-chain curves for recursive SNARKs (Chapter 4).
We derived and implemented in open-source (gnark-crypto [BPH+22b]) efficient algo-
rithms to speed up the arithmetic on these curves: co-factor clearing (Chapter 3), subgroup
membership testing (Chapter 3), multi-scalar multiplication (Chapter 5) and pairings over
2-chains (Chapter 4). We also studied and optimized elliptic-curve arithmetic (Chapter 6)
and pairings (Chapter 7) as a SNARK statement, yielding to the fastest recursive proof
generation in pairing-based settings.

Open questions

Throughout the dissertation, we littered a number of open questions. We collect them
hereafter:
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• Is it possible to find a silver bullet construction of elliptic curves that can address
all the efficiency/security requirements?

• Are there cycles of elliptic curves with the same embedding degree, and possibly the
same discriminant?

• Are there pairing-friendly cycles of embedding degrees greater than 6?

• Are there pairing-friendly cycles combining MNT, Freeman and Barreto-Naehrig
curves?

• Are there more efficient cycles of pairing- friendly curves? How to generate them?

• What are the optimal choices for 2-chains at higher security levels?

• Are there more efficient constructions of 2-chains with smaller outer curves?

• Is it possible to mutualize a maximum of computations between a G1 MSM instance
and a G2 MSM instance?

We hope that our dissertation attracts new interests towards this topic, and that
further developments translate into practical impact through one of the many frameworks
for theoretical research or practical deployment in this space.
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Appendix

A
Some open-source implementations of

SNARK-friendly curves

We report in Table A.1 some libraries that implement different SNARK curves, 2-chains
and 2-cycles. We only cite implementations that are used in zero-knowledge proofs based
projects and we omit to cite forks that improve independently over the original work. The
libraries are implemented in different languages and some use more assembly acceleration
than others. Besides the different algorithmic and software optimizations used across them,
it should also be noted that some libraries target constant-time implementations for some
or all the operations.

Note. Libraries in Table A.1 provide the classical implementation of elliptic curves. Few
of these libraries provide also implementations of curves as SNARK computations. That is,
the arithmetic of fields and groups of elliptic curves as statements to be proved in a SNARK
using another elliptic curve (e.g. Alg. 6.2 for twisted Edwards). For example arkworks [ac22],
gnark [BPH+22a], libsnark [BSCT+b] and zcash [BS] provide such implementations within
different proving systems.

4gnark-crypto and arkworks implement for each SNARK curve an associated twisted Edwards curve,
including Jubjub and Bandersnatch.
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Library curves implemented programming
language license zero-knowledge

projects

arkworks-rs
[ac22]

BN254
BLS12-381

BLS12-377/BW6-761 chain
MNT753 cycle
MNT298 cycle
Pasta cycle

(and all associated curves4)

Rust MIT
Apache-2.0

Celo
Aleo

Espresso (jellyfish)

Barretenberg
[WG] BN254 C++ GPL-2.0 Aztec rollup

blst
[Sup] BLS12-381 C Apache-2.0 Filecoin

Ethereum Foundation

constantine
[And]

BN254
BLS12-381
BLS12-377

Jubjub, Bandersnatch
Curve25519

Nim MIT
Apache-2.0

Status-Ethereum
(ongoing adoption)

Dalek
[dVYA22]

Ed25519
Curve25519 Rust BSD-3-Clause Dalek-bulletproofs

Spartan
Geth

(Cloudflare)
[ged]

BN254 Go LGPL-3.0 Geth
Erigon

gnark-crypto4

[BPH+22b]

BN254
BLS12-381
BLS24-317

BLS12-377/BW6-761 chain
BLS24-315/BW6-633 chain
(and all associated curves4)

Go Apache-2.0

gnark
ConsenSys Rollup

Algorand
Baseline protocol
Geth (Fuzzing)

Kilic
[Kil]

BN254
BLS12-381

BLS12-377/BW6-761 chain
Go Apache-2.0 Geth

Celo

libff
[BSCT+a]

BN254
BLS12-381
GMV6-183

MNT298 cycle

C++ MIT Libsnark
Loopring

mcl
[Shi]

BN254
BLS12-381 C++ BSD-3-Clause DFINITY

RELIC
[AGM+22]

BN254
BLS12-377
BLS12-381
BLS24-315

Tweedle/Pasta cycles

C Apache-2.0
LGPL-2.1 Chia Network

wasmcurves
[Bay]

BN254
BLS12-381 JavaScript, WASM GPL-3 Circom/snarkjs

Polygon Hermez rollup

zcash
[BS,Zca]

BN254
BLS12-381
Jubjub

Pasta cycle

Rust MIT
Apache-2.0

Zcash
Algorand

zkSync rollup

Table A.1: Some open-source implementations of SNARK-friendly curves.
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Titre : L’arithmétique des systèmes de preuves basés sur les couplages

Mots clés : Systèmes de preuves, SNARKs, Courbes elliptiques, Couplages bilinéaires

Résumé : Un système de preuve est un protocole où
une partie (appelée le prouveur) essaie de convaincre
une autre partie (appelée le vérifieur) qu’un énoncé
donné est vrai. Dans la classe des systèmes de
preuve non interactifs, un concept intéressant pour
prouver l’intégrité de calcul est le ”Succinct Non-
interactive ARgument of Knowledge” (SNARK). Il
fournit une preuve calculatoirement consistante, peu
coûteuse à vérifier et petite de taille par rapport à
la taille de l’énoncé ou du témoin. Les couplages bi-
linéaires sur des courbes elliptiques sont devenus des
ingrédients clés pour instancier de tels SNARKs.
Dans cette thèse nous étudions des courbes el-
liptiques à couplage efficace adaptées à ce type
de SNARKs. Nous présentons une étude à trois
étapes du processus : Des courbes pour instan-

cier un SNARK, des courbes pour instancier un
SNARK récursif, et également des courbes pour ex-
primer un énoncé lié à l’arithmétique sur la courbe
elliptique. Nous fournissons de nouvelles construc-
tions de courbes pour les SNARKs et de nou-
velles familles de 2-chaı̂nes de courbes pour les
SNARKs récursifs. Nous dérivons et implémentons en
open-source des algorithmes efficaces pour accélérer
l’arithmétique sur ces courbes : Effacement des co-
facteurs, test d’appartenance aux sous-groupes, mul-
tiplication multi-scalaire et couplage sur les 2-chaı̂nes.
Nous étudions et optimisons également l’arithmétique
des courbes elliptiques et le couplage bilinéaire en
tant qu’énoncés SNARK à prouver, permettant de
générer rapidement une preuve récursive.

Title : The arithmetic of pairing-based proof systems

Keywords : Proof systems, SNARKs, Elliptic curves, Bilinear pairings

Abstract : A proof system is a protocol where one
party (called the prover) tries to convince another
party (called the verifier) that a given statement is true.
In the class of non-interactive proof systems, a parti-
cularly interesting concept for proving the computatio-
nal integrity is the Succinct Non-interactive ARgument
of Knowledge (SNARK). It provides a computationally
sound proof, cheap to verify and small compared to
the size of the statement or the witness. Bilinear pai-
rings over elliptic curves have become key ingredients
for instantiating such SNARKs.
In this thesis we investigate tailored pairing-friendly
elliptic curves to efficiently implement SNARKs. We

present a study at three stages of the process :
curves to instantiate a SNARK, curves to instan-
tiate a recursive SNARK, and also curves to express
an elliptic-curve related statement. We provide new
constructions of curves for SNARKs and new families
of 2-chain curves for recursive SNARKs. We derive
and implement in open-source efficient algorithms to
speed up the arithmetic on these curves : Co-factor
clearing, subgroup membership testing, multi-scalar
multiplication and pairings over 2-chains. We also
study and optimize elliptic curves arithmetic and pai-
rings as a SNARK statement, yielding to the fastest
recursive proof generation in pairing-based settings.
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