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Abstract

This article serves as an extension to the introductory article on zero-

knowledge proofs (ZKP) by Berentsen, Lenzi and Nyffenegger (2022). We

provide one specific example of a zk-STARK and discuss all mathematical

steps needed. The goal is to make the example accessible and intuitive.

Furthermore, this article comes with an accompanying Python notebook1

that will let the reader execute a numerical example provided in the article.
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Introduction

This article serves as an extension to the introductory article on zero-knowledge

proofs (ZKP) by Berentsen, Lenzi and Nyffenegger (2022). We provide one spe-

cific example of a zk-STARK and discuss all steps needed. We decide to describe

a zk-STARK because we believe that it is possible to understand the easy ex-

ample with a basic math knowledge. All mathematical concepts that might be

new will be explained throughout the article. The goal is to make the example

accessible and intuitive. For the sake of clarity, we simplify certain concepts. Not

everything we discuss does generalize to more complex problems. Furthermore,

we do not focus on efficiency of the proof. Nevertheless the reader should gain a

lot of insights on how a ZKP works. Furthermore, this article comes with an ac-

companying Python notebook (link) that will let the reader execute a numerical

example in the article that is described in the green boxes.

Numerical Example:

These boxes provide a numerical example.

Additionally, we provide blue boxes including definitions that explain all mathe-

matical concepts that might be new to some readers.

Definition:

These boxes include mathematical definitions and explanations.

The proof we show is interactive. However, it can be transformed into a non-

interactive one as described in Berentsen, Lenzi and Nyffenegger (2022). Instead

of random queries by the verifier, the prover can apply the Fiat-Shamir heuristic,

i.e. use a cryptographic hash function’s output of a transcript of the protocol up

to this point to get pseudorandom queries. In this article we introduce a crucial

ingredient of ZKPs that is not talked about in Berentsen, Lenzi and Nyffenegger

(2022): polynomials. There are two main purposes. On the one hand they

allow to make a proof zero knowledge. On the other hand, they can make ZKPs
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succinct, i.e. the verifier is convinced of the proof’s correctness after just a few

queries. If a prover cheated, he would have to cheat almost everywhere when using

polynomials. This allows to catch a malicious prover with only a few queries.

The article is composed of three main parts. First, we will define the problem and

the statement to be proven. Second, we will discuss the arithmetization of the

statement, i.e. represent it as an algebraic problem. This involves working with

polynomials and transforming them in a certain way. Third, we check whether a

polynomial is of low degree. If it is, then the initial statement is true with high

probability. But let’s do this step by step.

1 Definition of the Problem

1.1 CI Statement, Trace and Polynomial Constraints

First, we define a computational integrity (CI) statement (see definition 1) we

want to prove.

Definition 1: Computational Integrity

Computational integrity (CI) means that the output of a certain computa-

tion is correct. (Ben-Sasson, 2019)

In our example, this is:

CI statement: The prover has a sequence A of N integers, all of which are either

0 or 1 (boolean).

The statement is true if all elements Ai ∈ A are either 0 or 1. The goal is to prove

that this statement is true with a sufficiently high probability without revealing

A, i.e. without revealing which element of A is 0 or 1. Henceforth, we call A the

trace.
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Numerical Example: Trace

In our example, we fix N = 4 such that

• Atrue = [1, 0, 1, 1]: satisfies CI statement.

• Afalse = [2, 0, 1, 1]: does not satisfy CI statement.

First, the prover and the verifier agree on certain conditions that have to hold if

the statement is correct. In our example, these conditions can be written as the

following polynomial (see definition 2) constraints

Ai(Ai − 1) = A2
i − Ai = 0 ∀i = 0, 1, ..., N − 1 (1)

Note that this only holds if Ai is either 1 or 0. The equations in (1) being true

thus implies that the CI statement above is true as well. To keep the problem

simple we choose N to be a power of 2.2

Definition 2: Polynomials and Polynomial Degree

A polynomial is a mathematical expression of a positive number of al-

gebraic terms linked by addition that consist of a constant a (positive or

negative) multiplied by one or several variables that are raised to a non-

negative integral power. Examples:

• f(x) = 2x4 − 3x2 + x− 2

• g(x, y, z) = 3xy2z4 + 2yz + 3z − 4

In the case of a single-variable polynomial this can be generalized as∑d
i=0 aiX

i.

The degree of a polynomial d is defined by the highest power. In case

of several variables, it is defined by the highest sum of the powers within

an algebraic term. f(x) has a degree of 4, which we write as deg(f) = 4.

2This is to ensure that we find a subgroup in section 2.1 given our definition of the finite
field F in section 1.2. If N is a power of 2, it is a divisor of the size of the multiplicative group
of F which ensures that a subgroup exists.
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To find the degree of g(x, y, z) we rewrite it as

g(x, y, z) = 3x1y2z4 + 2x0y1z1 + 3x0y0z1 − 4x0y0z0

The sum of the powers of the four terms is 7, 3, 2, 0 respectively. Since 7 is

the largest number we have deg(g) = 7.

Given a polynomial multiplication or divisiona of two polynomials it is

straightforward to calculate the degree of the resulting polynomial. For

illustration purposes it is enough to look at two polynomials with only one

term: h(x) = x7, l(x) = x4. For multiplication, i.e. h(x) · l(x), we just

add up the degrees of the two polynomials, i.e. deg(h)+deg(l) = 7+4 = 11.

We can check that this holds

h(x) · l(x) = x7 · x4 = x11.

For division, i.e. h(x)/l(x), we subtract the degree of the polynomial in

the numerator by the degree of the polynomial in the denominator, i.e.

deg(h)− deg(l) = 7− 4 = 3. Again we check whether this holds

h(x)/l(x) = x7/x4 = x3.

aAssuming division is possible.

1.2 Finite Field

Before creating the proof, the prover and the verifier need to define the field

(see definition 3) they are working with. As it is standard in computer science

problems, we will not work in the Euclidean space but with a finite field.3 The

most common way to work with a finite field is by using the modulo operator

3It is inefficient for a computer to work with very large numbers. Thus it is preferred
whenever possible to work in finite fields that keep the numbers the computer has to work with
within a certain range.
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with the arithmetic modulo M (see definition 4) . We could either work with a

binary field or a prime field. However, prime fields are easier to understand. In a

prime field, M is a prime number and the modular arithmetic keeps many of the

properties (e.g. addition, multiplication) from regular Euclidean arithmetic. We

denote the finite (prime) field we work with as F . Furthermore, we want the finite

field to be of size M = 2n + 1 for n ∈ {1, 2, 4, 8, . . .}.4 In realistic applications the

field size is very large and much larger than the size of the trace.

Definition 3: Fields and Finite Fields

A field is a set on which addition, subtraction, multiplication and division

are defined and certain basic rules are satisfied.

A finite field or (Galois field) is a finite set on which the operations of

multiplication and addition satisfy associativity, commutativity and dis-

tributivity. Also, in the finite set there exist additive and multiplicative

inverses alongside with an additive and a multiplicative identity element -

this is normally the 0 and 1 respectively.

Definition 4: Modular Arithmetic

Modular Arithmetic is often used when working with a finite field.

1
2

3

4

5

6

789
10

11
12

0

13

14
15

16

It can be best illustrated by using a “clock”. As-

sume we work in a prime field where the arithmetic

modulo is M = 17. The finite field contains the set

{0, 1, ..., 16}. Whenever an operation yields a result

that is larger than 16, we follow the clock clockwise,

starting with 0 again. Examples:

16 + 2 mod 17 = 1, 12 + 7 mod 17 = 2, 6 · 7 mod 17 = 8

4Only if n is a power of 2 will M = 2n + 1 be a prime. We could relax this to other prime
numbers M if M − 1 is a cyclic group (see definition 5) and N is a divisor of M − 1. However,
this would complicate the low degree testing in section 3.3.
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It is equivalent to write the numbers in their negative realization, e.g.

−5 = 17− 5 = 12, −10 = 17− 10 = 7, −2 = 17− 2 = 15

Software implementations of finite fields often use both the positive and

the negative realization.

Furthermore, we need to define how division works. Each element a ∈

{0, 1, ..., 16} in the field has a multiplicative inverse b that is defined by

a ∗ b = 1.a Calculating x/a is then equivalent to x ∗ b. In the field with

M = 17, the multiplicative inverses are

[1, 9, 6, 13, 7, 3, 5, 15, 2, 12, 14, 10, 4, 11, 8, 16]

Some examples:

5/4 = 5 · 13 = 14, 8/12 = 8 · 10 = 12, 15/16 = 15 · 16 = 2

aExcept for the 0 element. Since division by 0 is not possible, there is no multiplicative
inverse.

Numerical Example: Finite Field

To illustrate our example properly, we choose a very small finite field with

M = 24 + 1 = 17.a The finite field then is

F = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
aFinite fields that are used in real applications are much larger. In the zk-STARK

paper, Ben-Sasson et al. (2018) mention a binary field of size 264.

2 Arithmetization

After having defined the problem and the field we work with, we now get to the

arithmetization part. This means that we want to transform the problem into an
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algebraic problem to reason in the natural numbers.

2.1 Evaluating Trace as a Polynomial

We want to think of the trace as the evaluation of some polynomial f , i.e. for

some X ⊂ F where |X| = N we have that

f(Xi) = Ai ∀i = 0, 1, ..., N − 1.

This states that the outputs of the polynomial f relate to the trace. To choose

X, we define a subgroup G of size N of the multiplicative group F/{0}, where

F/{0} is the finite field without the zero. Furthermore, we define a generator g of

G (see definition 5).

Definition 5: Group, Subgroup, Generator and Cyclic Group

A group is a set with a binary operation that satisfies associativity, exis-

tence of an identity element and existence of the inverse (under this oper-

ation) for each element of the group.

A subset of the elements of a group is called a subgroup if it is a group

under the same binary operation.

A generator g is an element of the subgroup such that all powers of g

span the entire subgroup.

A cyclic group is a group that is generated by a single element, i.e. the

generator.

Numerical Example: Subgroup G and Generator g

Since N = 4, the size of the subgroup G ⊂ F is 4. We need to find a

g ∈ F/{0} for which the powers of g uniquely yield the elements of G. In

our example we find that g = 4 and G = {1, 4, 13, 16}. The table below

illustrates that the powers of g span the entire subgroup G. The second

row depicts numbers in the Euclidean space whereas the third row shows
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the realization in F/{0}.

g = 4 g0 g1 g2 g3 g4 g5 g6 g7 g8 . . .

R 1 4 16 64 256 1′024 4′096 16′384 65′536 . . .

F/{0} 1 4 16 13 1 4 16 13 1 . . .

The prover now maps the elements of the subgroup G defined by the generator g

to the sequence A using the polynomial f

f(gi) = Ai ∀i = 0, 1, ..., N − 1. (2)

This states that f maps the i’th element of the subgroup G to the i’th element

of the sequence A. The next step is to find f . Intuitively, if we think about the

polynomial in the Cartesian plane, the elements of G are the x-values and the

elements of A are the corresponding y-values. The goal is to find a polynomial

that fits through these points. Generally, there are many polynomials which could

be considered. However, there is only one low-degree polynomial (see definition

6). And for our use case it is crucial that we choose the low degree one. This

means that deg(f) < N . If all N points are distinct, this becomes deg(f) = N−1.

We can find this polynomial by using Lagrange interpolation or the fast Fourier

transformation, where the latter is more efficient for more complex problems than

ours (but also more complicated).

Definition 6: Unisolvence Theorem and Lagrange Polynomial

The Unisolvence theorem states that given a set of N data points (xi,yi)

where all xi are unique and a polynomial f is defined by

f(xi) = yi, i = 0, .., N
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then

∃!f s.t. deg(f) < N.

If deg(f) < N , then we call f a low degree polynomial or also Lagrange

polynomial since the Lagrange interpolation is an algorithm to find this

low-degree polynomial. If all points yi are distinct, we get deg(f) = N − 1.

If they are not distinct, we can have deg(f) << N . Using the theorem, it is

straightforward that a polynomial of degree d can be uniquely determined

by d+ 1 data points.

To gain some intuition, let’s go through the following example. If you have

only one point (x, y) = (1, 1) s.t. N = 1, you can fit a vertical line, i.e. the

polynomial f(x) = 1 of degree 0. It holds that deg(f) = N−1. If you have

two points (x, y) = ({1, 2}, {1, 4}) s.t. N = 2 you can fit a function of the

form y = mx+c, i.e. the polynomial f = 3x−2 of degree 1. Again it holds

that deg(f) = N−1. However if the two points have the same y-coordinate

in the N = 2 case, i.e. (x, y) = ({1, 2}, {1, 1}), the polynomial f(x) = 1

of degree 0 can fit these two points. Thus, it follows that deg(f) << N is

possible. Furthermore, there are polynomials that are of higher degree and

also fit through these two points. For example the quadratic polynomial

f = x2 of degree 2 also fits through (x, y) = ({1, 2}, {1, 4}). However, this

violates the definition of a low degree polynomial since deg(f) ≮ N .
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Numerical Example: Lagrange Interpolation

Given A = Atrue = [1, 0, 1, 1], the prover needs to find a polynomial

f : G→ F

s.t.

f(g0) =f(1) = A0 = 1

f(g1) =f(4) = A1 = 0

f(g2) =f(13) = A2 = 1

f(g3) =f(16) = A3 = 1.

Applying the Lagrange interpolation we find

f(x) = −x3 − 4x2 + x+ 5 (3)

which is equal to

f(x) = 16x3 + 13x2 + x+ 5.

2.2 Evaluate the Polynomial on a Larger Domain

So far we have provided a statement to be proven, set up the mathematical

constraints that need to hold if the statement is true, defined the field that we

work in and found a polynomial that relates the subgroup G to the elements in A.

Remember that we do that because we want to be able to check the CI statement

mathematically with only a few queries.

The verifier could now check whether the outputs of f are indeed only 1’s and 0’s.

However, this would not help us with zero knowledge and succinctness. Hence,

the next step is to extend f to a larger domain.
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To do that we evaluate f not only in G but on a larger domain L where G ⊂

L ⊆ F/{0} such that f : L → F . By doing so we create a Reed-Solomon error

correction code (see definition 7). For reasons we will see later, the size of L

should be a power of 2. Both the prover and the verifier agree upfront what L is.

Evaluating a polynomial in a larger domain is a very common thing with various

applications in engineering, computer science, cryptography and other areas.

Definition 7: Reed-Solomon Error Correction Code

A Reed-Solomon Error Correction Code is an error correction code

(ECC) which is mostly used for controlling errors in data or communication

channels. One motivation is that if you store data somewhere (e.g. a CD

or a DVD) you still want to be able to read the data even if some bits

will be damaged. Or if you send a message over the internet, the data

you send from your phone to the next antenna may get slightly corrupted

when passing a thick wall and you want to ensure that the message is still

transmitted properly. Using an ECC can handle these problems by adding

some redundancy to the data which allows to detect whether the data is

corrupted and can also correct the data up to a certain number of errors.

In the Reed-Solom ECC this is done by encoding the data into polynomials.

Conceptually this works as following. Remember from the Unisolvence

theorem that a set X of N distinct points (think of them as data points

we store) can be uniquely defined by a polynomial f of degree N − 1. If

we extend f to a larger domain, such that we e.g. evaluate the polynomial

over a domain of size 2N , we can loose up to 50% of any points and are

still able to derive the original polynomial with degree N − 1 from the N

remaining points. As a consequence, we can also restore the original set X.

Numerical Example: Extend to Larger Domain

For the sake of clarity and simplicity we choose this larger domain to be

equal to the multiplicative group of the finite field, i.e. L = F/{0}. However,

it is important to note that in more complex problems, L << F/{0}. If L
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is too big, the computations become inefficient, we will see later why this

is. In the figure below we illustrate the polynomial defined in equation (3).

The graph on the left shows the polynomial f in the finite field. The red

dots are the evaluations of G which match the trace A. The graph on the

right shows the polynomial in the Euclidean space for illustration purposes.
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2.3 Apply Constraints to Polynomial

Remember that in (1) we defined a set of constraints which hold iff the trace

contains only 0’s and 1’s or in other words iff the CI statement is true. Since

the polynomial f relates directly to the trace, the prover can now combine the

constraints in (1) with the polynomial defined in (2)

A2
i − Ai = 0⇒ f(gi)2 − f(gi) = 0 ∀i = 0, 1, ..., N − 1

and define this expression as the constraint polynomial c : L→ F

c(x) = f(x)2 − f(x). (4)

For all elements of the subgroup G, the polynomial c is 0, i.e.

c(x) = f(x)2 − f(x) = 0 ∀x ∈ G. (5)
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In other words, iff the CI statement is true, then c has roots for all elements of

G. Note that c can also have roots for x /∈ G.

Numerical Example: Get Constraint Polynomial c(x)

Using equation (3) we get

c(x) =f(x)2 − f(x)

=x6 + 8x5 − 3x4 − x2 − 8x+ 3. (6)

c is illustrated in the figure below. The red dots show that the polynomial

has roots (equals 0) for all elements of G.
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2.4 Create the Composition Polynomial

In the next step, the prover transforms c(x) using the properties of roots of

polynomials (see definition 8) to get another polynomial p(x)

p(x) =
c(x)∏N−1

i=0 (x− gi)
∀x ∈ F and x /∈ {g0, g1, . . . , gN−1}. (7)

with degree deg(p) = deg(c) − N . We henceforth call p(x) the composition

polynomial.5 Definition 8 states that p(x) is only a polynomial if all elements

5Note that this is a simplification from the real STARK implementation. Here we only
have one constraint defined in equation (1). In more complex problems there is not only one
constraint but several. Thus, there are several p(x) polynomials. In that case the prover
creates a linear combination of all p(x) which is then called the composition polynomial. For
example if there are three constraints and consequently we get three low degree polynomials
p1(x), p2(x), p3(x), then what we call the composition polynomial is P (x) = α1p1(x)+α2p2(x)+
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of G are roots of c(x). And as we discussed earlier, only if the CI statement

is correct, then all elements in G are roots of c(x) (see section 4 to gain some

intuition on what happens if the CI statement is not correct). Therefore, checking

that p(x) is a polynomial of degree at most deg(c) − N is equivalent to stating

that the CI statement is correct.

Definition 8: Roots of Polynomials

If a set {g0, g1, . . . , gN−1} are N roots of a polynomial c(x)a, then there

exists another polynomial p(x) that can be defined as

p(x) =
c(x)∏N−1

i=0 (x− gi)
∀x ∈ F and x /∈ {g0, g1, . . . , gN−1}

whose degree is deg(p) = deg(c) − N .b In other words, we can define a

polynomial p(x) that agrees with the RHS for all x ∈ F except for x ∈

{g0, g1, . . . , gN−1}.c The important part is that p(x) only is a polynomial,

if {g0, g1, . . . , gN−1} really are the roots of c(x).d

aThere might be other roots as well.
bx in the denominator is multiplied N times. Thus the degree of the polynomial in

the denominator will be N . Along the lines of definition 2 it is straightforward why
deg(p) = deg(c)−N .

cFor x ∈ {g0, g1, . . . , gN−1}, the denominator is 0.
dTo gain some intuition assume that c(x) = (x − 1)(x − 2)(x − 3) s.t. the roots are

z = {1, 2, 3}. If we apply the equation above and only include roots in the denominator

the result will be another polynomial, e.g. p(x) = (x−1)(x−2)(x−3)
(x−1)(x−2) = x − 3 or p(x) =

(x−1)(x−2)(x−3)
(x−3) = (x−1)(x−2). However, if we do not include a root in the denominator,

p(x) will not be another polynomial, e.g. p(x) = (x−1)(x−2)(x−3)
(x−7) .

Note that the verifier has all information to derive the highest degree that still

passes as low degree. N is known and f(x) must be of degree at most N − 1.

Additionally the verifier knows the constraint in equation (1) and can derive that

the degree of c(x) will be at most 2deg(f) = 2(N − 1). Using equation (7) he can

calculate that the degree of p(x) is at most deg(c)−N = 2(N − 1)−N = N − 2.

Furthermore, we can think more about the denominator of the RHS in (7). Since

we chose g in a way that its powers form a subgroup, we can apply the following

α3p3(x), where α are pseudorandom numbers.
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formula6

N−1∏
i=0

(x− gi) = xN − 1 = u(x). (8)

On first sight, this might seem like a minor step. However, the RHS in (8) is

considerably less computationally expensive (running time (see definition 9) is

logarithmic in N) compared to the LHS (running time is linear in N). This

simplifies the expression in (7) to

p(x) =
c(x)

u(x)
=
f(x)2 − f(x)

xN − 1
∀x ∈ F and x /∈ {g0, g1, . . . , gN−1} (9)

Numerical Example: Get Composition Polynomial

Using equation (9) we get

p(x) =
x6 + 8x5 − 3x4 − x2 − 8x+ 3

x4 − 1

p(x) =x2 + 8x− 3.

It is straightforward that the upper bound of the degree on p(x), i.e.

deg(p) = N − 2 = 2, holds.
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6You can check in the numerical example that this holds. By multiplying
(x− 1)(x− 4)(x− 13)(x− 16) you will get (x4 − 1).
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Definition 9: Runtime and Big O Notation

The running time of an algorithm is the number of computation steps a

computer performs for an input of size N . If an algorithm’s running time is

linear (logarithmic) in N , then the number of computation steps increases

linear (logarithmic) in N .

Big O notation is used to write the running time in compact form. See

the table below for examples.

O(N) Algorithm runs in linear time.

O(logN) Algorithm runs in logarithmic time.

O(N2) Algorithm runs in quadratic time.

2.5 Commitments

We have now made big progress. The way we transformed the problem allows us

to state that the CI statement is true if p(x) is a polynomial of low degree. But

before we go into detail on how low-degree testing works, there are some other

caveats we need to deal with first. For now just assume that the verifier knows

how to do the low degree testing.

So far we know that equation (9) needs to hold if the CI statement is true.

To verify the equation, the verifier needs data points on p(x) and f(x) from

the prover. However, for each query a malicious prover could respond with any

random values for p(x) and f(x) that fit equation (9). To ensure that a prover

cannot just respond with random numbers we introduce commitments via Merkle

trees.7

After the prover has calculated f(x) and p(x), he creates a Merkle tree for f(x)

7There are more efficient ways to commit to polynomials. For example by using KZG
polynomial commitments introduced by Kate, Zaverucha and Goldberg (2010). Due to their
higher complexity we stick to Merkle trees which are easier to understand.
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and one for p(x) denoted as MTf and MTp respectively. The data blocks at the

bottom of the tree consist of f(x) ∀x ∈ L for MTf and of p(x) ∀x ∈ L for MTp.

After calculating the Merkle trees, the prover sends the Merkle roots of the two

trees to the verifier. This eliminates the problem that the prover might respond

with random values, because the verifier can check whether these values fit the

commitment (i.e. the Merkle roots).

Numerical Example: Merkle Trees

The prover calculates the Merkle trees for p(x) and f(x). Below the LHS

of MTp that corresponds to our example is illustrated. H denotes the hash

function. The numbers in the boxes represents the level of the tree and the

leave number in a given level. 3.1 is the first leave in the third level.

Merkle root

0 ≡

H(1.1|1.2)

1.1 ≡

H(2.1|2.2)

2.1 ≡

H(3.1|3.2)

3.1 ≡

H(4.1|4.2)

4.1 ≡

H(p(1))

p(1) ≡

6

4.2 ≡

H(p(2))

p(2) ≡

0

3.2 ≡

H(4.3|4.4)

4.3 ≡

H(p(3))

p(3) ≡

13

4.4 ≡

H(p(4))

p(4) ≡

11

2.2 ≡

H(3.3|3.4)

3.3 ≡

H(4.5|4.6)

4.5 ≡

H(p(5))

p(5) ≡

11

4.6 ≡

H(p(6))

p(6) ≡

13

3.4 ≡

H(4.7|4.8)

4.7 ≡

H(p(7))

p(7) ≡

0

4.8 ≡

H(p(8))

p(8) ≡

6

1.2 ≡

. . .

The prover then sends both Merkle roots

MTf (root) =

3ffb41e31ea9f86466a4871ac55d4ee78dde430fbed741b8cceb3f43321cf96e

MTp(root) =

2e9b0882df3c19559754ea9cae76babc40fbc7950f79326046ac8479f066717e

to the verifier.
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2.6 Querying

As discussed above the verifier wants to check whether the composition polyno-

mial p(x) is of low degree. However, this test is not sufficient since the prover

could just choose any random low degree p(x). Thus, the verifier needs to assert

that the low degree polynomial p(x) relates to the constraint polynomial c(x).

He verifies that a rearranged form of equation (9) holds, i.e.

p(x)u(x) =c(x)

p(x)(xN − 1) =f(x)2 − f(x). (10)

A verifier checks whether equation (10) holds by choosing a random x, querying

for the corresponding f(x) and p(x) and calculating u(x) by himself. We discuss

the querying protocol in more detail below but first want to motivate why this

test is relevant.

If a verifier chooses a random x-value and the prover is honest, equation (10) will

hold for all possible x-values. This is only true if p(x) and f(x) are the correct

polynomials. Now assume there is a malicious prover who wants to cheat by

changing p(x) to

pfalse(x) = 15x2 + 6x+ 13.

Furthermore he uses equation (10) to calculate the corresponding cfalse(x), i.e.

cfalse(x) = pfalse(x)u(x) = 15x6 + 6x5 + 13x4 + 2x2 + 11x+ 4.

Figure 1 depicts the correct p(x) and c(x) from the numeric example and their

corresponding false counterparts. You can see that the polynomials differ quite

a lot. p(x) and pfalse(x) are equal in only two points, c(x) and cfalse(x) in six.

If a verifier receives the correct f(x) to calculate the RHS of equation (10) and

receives the wrong pfalse(x) to calculate the LHS, he would spot that the equation

does not hold with a relatively high probability.
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Figure 1: Illustration of a malicious prover choosing a random low degree poly-
nomial pfalse(x) and the corresponding cfalse(x) and their correct counterparts.

This is due to another property of polynomials. Two polynomials of degree d

have at most d intersections (see definition 10). This is why p(x) and pfalse(x)

which have a degree of 2 intersect in two points and c(x) and cfalse(x) which have

a degree of 6 have six intersections. In this example the probability of choosing

a x for which c(x) and cfalse(x) intersect is still pretty high. However, this is

only the case because we chose a small domain L for illustrative purposes. In a

real application we would evaluate c(x) in a much larger domain which increases

the number of distinct points by keeping the intersections constant. Assume we

changed the domain to L(1000) and also adjust the finite field to F (1000). Of

all the 1000 points in which the polynomial is evaluated, the two polynomials

are equal only in 6. This means that if we evaluate two polynomials of equal

degree in a larger domain, they are quite far apart, i.e. have many different

values. Therefore, the probability that a verifier queries at a point in which

both polynomials are equal is very small (0.6%) which in turn means that the

probability of catching a malicious prover is very high. The probability of doing

so in the numerical example with L(1000) above is 94.4% after only one query.

After 10 queries the probability would already go up to 1 − 6 ∗ 10−23. Thus a

verifier would spot that equation (10) does not hold almost certainly.
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Definition 10: Intersections of Polynomials

If two polynomials f and g both have degree d, then there are at most d

intersections.

To see this, we define another polynomial h = f − g that also has degree

d. The roots of h will obviously be the intersections of f and g. Using a

finite field version of the fundamental theorem of algebra we know that a

single-variable polynomial of degree d has at most d roots.a This shows

that two polynomials of degree d have at most d intersections.

aThe fundamental theorem of algebra states that a single-variable polynomial of
degree d has exactly d roots, because it considers complex roots as well. Since in finite
fields we do not work with complex numbers, the theorem changes to at most.

We have seen that it is very unlikely that the prover can cheat by choosing another

low degree polynomial pfalse(x) that does not relate to f(x) and c(x). What if a

prover would want to change both p(x) and c(x) such that equation (10) holds? It

is easy to find another cfalse(x) that relates to pfalse(x). However, remember that

the verifier does not check c(x) but recalculates c(x) = f(x)2−f(x) with the value

for f(x) he receives from the prover. So basically the prover would need to find a

different polynomial ffalse(x) which is defined by cfalse(x) = ffalse(x)2−ffalse(x).

It is however not feasible to find a ffalse(x) that fits the constraint. As we know

from earlier there is only one low degree polynomial f that has roots for all

elements of the group G. And as known from definition 8, if f does not have

roots for all elements in G then equation (10) does not hold in the first place. If

it does not hold, the polynomials in the LHS and RHS of equation (10) would be

again far apart similar to what you saw in figure 1 which makes it relatively easy

to catch a malicious prover.

After describing the motivation for verifying equation (10), we describe the pro-

tocol. As mentioned above the verifier chooses a random x. However, it is crucial

in which domain the verifier is allowed to query. If the verifier can query in the

whole domain L including in G, then the verifier can derive information about
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the trace. Because for all x ∈ G he receives f(x) from the prover and as we know

we have

f(xi)→ Ai ∀xi ∈ G.

As a consequence the zero knowledge property would be violated. If we allow

for queries x ∈ L we have a validity proof for which we care only about the

computational integrity of the statement and a succinct verification thereof. If

we want to further ensure that zero knowledge is guaranteed, we can only allow

the verifier to query for {z ∈ L|z /∈ G}.8 This is what we henceforth assume.

Upon a query for a value z by the verifier, the prover returns p(z), f(z) and the

Merkle paths of both trees.9 The verifier now checks whether p(z) and f(z) (i)

correspond to the committed Merkle root using the Merkle paths and (ii) fit in

equation (10), i.e.

p(z)(zN − 1) = f(z)2 − f(z).

Th verifier can query repeatedly for different z to increase the probability to catch

a malicious prover. The interaction in this part of the proof is illustrated below.

Prover
Calculates merkle tree
on p(x) and f(x)

Prover Verifier

Sends Merkle Root
of both trees

Prover Verifier

Sends random
{z ∈ L|z /∈ G}

Prover Verifier

Sends p (z) , f (z) and
Merkle branches

8In real applications a verifier can normally query for all committed values. This would
complicate things a bit which is why we decide to set up the protocol in that way.

9A Merkle path is the set of all hashing partners of f(z) or p(z) at each level of the tree that
are needed to calculate the Merkle root.
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Numerical Example: Querying

Assume that the verifier queries for z = 3. The prover then returns

f(3) = 13, p(3) = 13 and the Merkle paths of MTf and MTp. We here

only conceptually describe how the commitment is verified. Upon receiv-

ing p(3) = 13 the verifier hashes it to get the first leave in the tree. This

would be leave 4.3 in the illustration of the Merkle tree in section 2.5. The

Merkle path for MTp the prover sends is the set of all yellow boxes, i.e.

{4.4, 3.1, 2.2, 1.1}. The verifier than hashes 4.3 pairwise with the nodes in

the Merkle path until he ends up at the top and the Merkle root results.

If the calculated Merkle root does not fit the Merkle root received upfront,

the proof is invalid.

Additionally, the verifier checks whether equation (10) holds using the val-

ues received from the prover and calculating (zN − 1) himself

p(z)(zN − 1) =f(z)2 − f(z)

p(3)(34 − 1) =f(3)2 − f(3)

13 · 12 =132 − 13

3 =3

which is true. Again, if this did not hold, the proof is invalid. The ver-

ifier can query several times until he is convinced with a sufficiently high

probability that equation (10) holds.

3 Low-Degree Testing

By now the verifier knows that p(x) is the polynomial for which the constraints

hold with high probability. Thus, we can talk about low-degree testing. Before

we start and discuss why low-degree testing is even necessary, we do a quick recap

of what we have done so far. We denote the prover as P and the verifier as V.
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• P and V agree on a statement to be proven, i.e. the trace only contains 0’s

and 1’s.

• P and V agree on constraints. If they hold, the statement is true.

• P calculates a polynomial f that maps a certain set of inputs G to the

trace.

• P extends the polynomial f to a larger domain, i.e. to L ⊆ F .

• P calculates the composition polynomial p.

• P commits to f and p.

• V queries P to check whether p is the correct polynomial for which the

constraints defined before hold.

3.1 Motivation

So far we know that a verifier will check whether equation (10) holds. Addition-

ally, we mentioned that the second check a verifier does is whether p(x) is of low

degree. Before we explain how this works, we motivate how a malicious prover

could cheat if p(x) is not of low degree.

If we did not have low degree testing, then the only check a verifier makes is

checking whether equation (10), i.e.

p(x)(xN − 1)︸ ︷︷ ︸
c1(x)

?
= f(x)2 − f(x)︸ ︷︷ ︸

c2(x)

holds. Above we already discussed that a malicious prover cannot cheat by using

another low degree p(x). But what if p(x) and f(x) are of high degree? Is it now

possible to satisfy equation (10)?

The idea is that a malicious prover could search for a high degree pH(x) and a

corresponding fH(x) such that equation (10) holds for most x. This is possible
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because higher degree polynomials can be “shaped” however needed. If a verifier

queries for some random points, he would not detect the false proof with high

probability.

One (of many possible) example would be the two high degree polynomials

fH(x) =x15 + 4x14 + 6x13 + 11x12 + 6x11 + 5x10 + 6x9 + 13x8

+ 7x7 + 7x6 + 12x5 + 8x4 + 2x3 + 2x2 + 9x+ 3

pH(x) =13x15 + 8x14 + 11x13 + 2x12 + 16x11 + 9x10 + 3x9 + 11x8

+ 6x7 + 14x6 + 13x5 + 4x4 + 8x3 + 3x2 + 2x+ 14

The left graph of figure 2 depicts fH(x). The prover tries to cheat by having a

number different from 0 or 1 in g4 = 16. Remember that given a query for {z ∈

L|z /∈ G} the prover responds with pH(z) and fH(z). The verifier then checks

whether the left hand side of equation (10) denoted as cH1 (x) = pH(x)(xN − 1)

is equal to the right hand side denoted as cH2 (x) = fH(x)2 − fH(x). The right

graph of figure 2 shows cH1 (x) and cH2 (x).
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Figure 2: Cheat with high degree pH(x) and fH(x).

It follows that

cH1 (x) = cH2 (x) ∀ {x ∈ L|x 6= 16}

If the verifier queries for random points, he will only discover that the proof is false

25

Electronic copy available at: https://ssrn.com/abstract=4308637



if he queries for x = 16 and hence the proof would pass with a high probability.

If we further consider the zero knowledge property, i.e. the verifier cannot query

for x ∈ G, the probability that the false proof passes is 1.

Contrary, we have seen that this attack is not possible if p(x) is a low degree

polynomial because any other polynomial of equal degree is sufficiently different

such that the verifier would discover the false proof. Thus, we need low degree

testing.

3.2 Setup

We want to check whether p(x) is a polynomial of low-degree. Remember that

in section 2.4 we showed that for our example the degree of the composition

polynomial is

deg(p) ≤ N − 2 = d̄

where we denote the highest acceptable degree as d̄.

The most obvious way of testing whether a polynomial has degree d is querying

for d + 2 values. Remember from the Unisolvence theorem that a polynomial of

degree d can be uniquely determined by d + 1 distinct values. Thus, using the

d+1 values we can determine the polynomial and ensure with the additional query

that the polynomial is correct. However, if we have more complex problems, N

and thus d might be very large such that it would be inefficient to do d+1 queries.

There is a way how the verifier can ensure with just a few querying steps that

p(x) is a polynomial that has at most degree d̄ (i.e. satisfies the constraints) with

high probability. We here show the FRI protocol10 developed by Ben-Sasson

et al. (2017). The basic idea is to reduce the dimensionality of the problem

by transforming the polynomial in a way that in each step the degree of the

10Fast Reed-Solomon Interactive Oracle Proof of Proximity.
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polynomial is halved. After a certain number of steps λ we end up with a constant.

Since λ is directly related to the degree of the polynomial, we know that if λ does

not exceed a certain number, the polynomial is with high probability of low

degree. The FRI protocol is much more efficient than just querying for d + 2

values since its running time is O(logN).

3.3 Commitment Round

The polynomial p(x) is transformed in each iteration using the FRI operator.

Applying it yields a new polynomial p1(x2) for which deg(p1) = deg(p)/2.11 Fur-

thermore, the domain in which the polynomial is evaluated is also halved such

that p1(x2) is not evaluated in L but in L2.12 Here it becomes important that we

chose the size of L to be a power of 2 such that the halving of the domain works.

We can repeatedly apply the FRI operator such that after λ = log2(deg(p)) + 1

iterations a constant remains. This is illustrated below

p(x) where deg(p) = d̄ and p is evaluated over L

↓ FRI operator

p1(x2) where deg(p1) = d̄/2 and p is evaluated over L2

↓ FRI operator

p2(x4) with deg(p2) = d̄/4 and p is evaluated over L4

↓ FRI operator

p3(x8) with deg(p3) = d̄/8 and p is evaluated over L8

...

pλ(x
2d) = const (deg(pλ) = 0)

11We assume here that deg(p) = 2n for n = {0, 1, 2, . . .}. In general it holds that if 2n−1 <
deg(p) < 2n, then 2n−2 < deg(p1) < 2n−1.

12Since the size of L is a power of 2, calculating L2 in a finite field is equal to halving the
size of L. See the numeric example for the intuition.

27

Electronic copy available at: https://ssrn.com/abstract=4308637



If after λ FRI operations the resulting polynomial is not a constant, then the

composition polynomial p(x) is not of low degree and the proof fails.

The FRI operator works as following. The prover splits up the polynomial p(x)

into its even and odd parts

p(x) = g0(x2) + xh0(x2) (11)

where g0 contains the even parts and h0 the odd parts. The next step in the

protocol is that the prover receives a random α0 ∈ F from the verifier and uses

it to calculate a new function

p1(x) = g0(x) + α0h0(x) for x ∈ L2. (12)

The last step in an iteration of the FRI operator is that the prover commits p1(x)

in a Merkle tree by sending the Merkle root13 of the tree to the verifier.

This algorithm is repeatedly applied. So generally we can say that in the each

iteration for k ∈ {0, 1, 2, . . . , λ}, the prover splits

pk(x) = gk(x
2) + xhk(x

2)

gets a random αk ∈ F from the verifier, calculates

pk+1(x) = gk(x) + αkhk(x).

and commits pk+1(x) in a Merkle tree over L(2k). The algorithm is stopped after λ

iterations when a constant remains. The prover sends the constant to the verifier.

13In a non-interactive proof, the prover could use this Merkle root to create a pseudorandom
α.
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Numerical Example: FRI Commitment Round

Recall that the composition polynomial is defined as

p(x) = x2 + 8x− 3.

The degree of p(x) is d̄ = deg(p) = N − 2 = 2. Thus we expect to need

λ = log2(deg(p)) + 1 = log2(2) + 1 = 2 iterations.

In the first iteration of the FRI operator, the prover splits

p(x) =x2 + 8x− 3

=x2 − 3︸ ︷︷ ︸
g0(x2)

+x · 8︸︷︷︸
h0(x2)

and thus

g0(x) = x− 3

h0(x) = 8.

Next, the verifier sends α0, assume α0 = 10. The prover then calculates

p1(x) = g0(x) + α0h0(x)

= x− 3 + 10 · 8

= x+ 9

and commits p1(x) over L2 by sending the Merkle root to the verifier.

So what is L2? We illustrate this below and realize that L2 is perfectly

symmetric why it is half the size of L.

L = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}

L2 = {1, 4, 9, 16, 8, 2, 15, 13, 13, 15, 2, 8, 16, 9, 4, 1}

L2 = {1, 2, 4, 8, 9, 13, 15, 16}
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In the second iteration we have

p1(x) =x+ 9

= 9︸︷︷︸
g1(x2)
=g1(x)

+x · 1︸︷︷︸
h1(x2)
=h1(x)

Assume the verifier sends α1 = 15. The prover will calculate

p2(x) = g1(x) + α1h1(x)

= 9 + 15 · 1

= 7

and send it to the verifier.

3.4 Querying Round

The verifier now needs to check whether the prover performed the FRI protocol

correctly and that the last polynomial really is a constant.

Specifically, the verifier chooses a {z ∈ L|z /∈ G} and “replicates” the FRI proto-

col for this z. After λ iterations, the verifier should end up with the constant he

received from the prover in the commitment round.

The verifier sends z to the prover who then returns p(z) and p(−z). The crucial

part is that with this information the verifier can solve the following system of

equations

p(z) = g0(z2) + zh0(z2)

p(−z) = g0(z2)− zh0(z2)
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to get g0(z2) and h0(z2) and then compute

p1(z2) = g0(z2) + α0h0(z2).

The verifier then queries the prover for p1(z2) and the corresponding Merkle path.

He can now check whether p1(z2) fits (i) his own calculation and (ii) the Merkle

root received in the commitment round.

Now the next iteration in the querying round for z starts. The verifier also queries

for p1(−z2) and repeats the exercise above. He solves

p1(z2) = g1(z4) + z2h1(z4)

p1(−z2) = g1(z4)− z2h1(z4).

to find g1(z4) and h1(z4) and then calculates

p2(z4) = g1(z4) + α1h1(z4).

In general, the verifier chooses a z ∈ L and in each of k ∈ {0, 1, . . . , λ} iterations

he queries for pk(z
2k) and pk(−z2k), calculates

pk(z
2k) = gk(z

2k+1

) + z2khk(z
2k+1

)

pk(−z2k) = gk(z
2k+1

)− z2khk(z
2k+1

).

to find gk(z
2k+1

) and hk(z
2k+1

). Lastly, he computes

pk+1(z2k+1

) = gk(z
2k+1

) + αkhk(z
2k+1

)

and queries for the Merkle paths of pk+1(z2k+1
). He checks whether this fits the

Merkle root received from the prover in the commitment round.

In the last iteration, the verifier can check whether the number he computes
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compares to the constant he received from the prover in advance. If this is is the

case, the proof is successful for this query.

The verifier can repeat this query several times for different z until he is convinced

that the prover did not cheat with a sufficiently high probability.

Numerical Example: FRI Commitment Round

Assume that the verifier queries for z = 12. The prover then sends p(12) =

16 and p(−12) = p(5) = 11 and the verifier solves

16 = g0(z2) + 12h0(z2)

11 = g0(z2)− 12h0(z2)

which yields g0(z2) = 5 and h0(z2) = 8. Next, he calculates

p1(z2) =g0(z2) + α0h0(z2)

=5 + 10 · 8

=0

Note that z2 = 122 = 8 and that z2 = 8 ∈ L2. The verifier now queries

the prover for p1(z2) = p1(8).a The prover returns p1(8) = 0 and the

corresponding Merkle paths. The verifier can confirm that this fits his

calculation p1(z2) = 0 and the Merkle root.

For the second iteration, the verifier also queries for p1(−z2). We have

−z2 = −8 = 9 ∈ L2. The prover returns p1(9) = 1

0 = g1(z4) + 8h1(z4)

1 = g1(z4)− 8h1(z4)
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which yields g1(z4) = 9 and h1(z4) = 1. Again the verifier then calculates

p2(z4) =g1(z4) + α1h1(z4)

=9 + 15 · 1

=7.

This equals the constant that the verifier received upfront from the prover

and the proof is successful.

aRemember that we had p1(x) = x+ 9.

3.5 Another Caveat

There is another caveat. When applying the FRI protocol it is possible to end

up with a constant with less than λ steps. To see how consider the following

composition polynomial which has nothing to do with the problem so far and is

solely for illustration purposes.

p(x) =6x7 + 3x6 + 2x5 + 5x4 + x3 + 9x2 + 10x+ 4

Splitting it up in the even and odd parts yields

g0(x) =3x3 + 5x2 + 9x+ 4

h0(x) =6x3 + 2x2 + x+ 10.

Note that if we compute the linear combination to find p1(x), i.e.

p1(x) = g0(x) + α0h0(x) = 3x3 + 5x2 + 9x+ 4 + α0(6x3 + 2x2 + x+ 10)
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∃!α̃0 ∈ F for which the x3 term disappears. This is the case when α̃0 = 8:

p1(x) = 3x3 + 5x2 + 9x+ 4 + 8(6x3 + 2x2 + x+ 10)

= 3x3 + 5x2 + 9x+ 4 + 14x3 + 16x2 + 8x+ 12

= 0x3 + 4x2 + 0x+ 16

= 4x2 + 16.

This shows that if α̃0 is chosen, we end up with a lower degree polynomial than

expected and would approach the constant faster than we are supposed to. This

would allow to cheat with a high degree polynomial. Thus it is crucial that α is

chosen randomly. Nevertheless, it is possible that by accident the verifier selects

α̃. However, there exists only one α̃, and thus the probability that the verifier

selects it is 1/M . For large fields this probability is very small.

4 Attack With False Trace

Assume that a malicious prover’s trace is Afalse = [2, 0, 1, 1]. In this case, the

polynomials ff (x) and cf (x) = f 2
f (x)− ff (x) are

ff (x) = 12x3 + 9x2 + 14x+ 1

cf (x) = 8x6 + 12x5 + 9x4 + 9x3 + x2 + 14x

The roots of cf (x) are x = {0, 5, 8, 12} which is different to G. This contradicts

definition 8 and hence pf (x) should not be a polynomial. Indeed we get

pf (x) =
cf (x)

xN − 1
= 8x2 + 12x+ 9, Reminder: R(x) = 9x3 + 9x2 + 9x+ 9

What if a malicious prover commits to pf (x) and ff (x)? The verifier would still
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check equation (10), ie

pf (x)(xN − 1)︸ ︷︷ ︸
c̄(x)

= ff (x)2 − ff (x)︸ ︷︷ ︸
cf (x)

but since definition 8 is violated, the LHS of the equation denoted as c̄(x) would

be a different polynomial that is far from cf (x). This is illustrated in figure 3.

Since cf (x) and c̄(x) have both a degree of six, they intersect at most six times

and hence a verifier will spot a wrong trace with a very high probability if the

domain is large enough.

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16
cf(x)
c(x)

Figure 3: Cheat With Wrong Trace.

5 Summary of the Protocol

To conclude we summarize the protocol. The prover is denoted by P, the verifier

as V.

1 Definition of the problem

1.1 P and V agree on a CI statement and constraints that must hold for

the CI statement to be correct.

1.2 P and V agree on the finite field F they work in.
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2 Arithmetization

2.1 P defines a low-degree polynomial f that relates a subgroup G ⊂ F to

the trace.

2.2 P evaluates f on a larger domain L. L is known by V as well.

2.3 P combines constraints with the polynomial to get a new polynomial

c.

2.4 P creates the composition polynomial p which is a polynomial of low

degree iff the CI statement is true.

2.5 P commits over f and p using Merkle trees and sends the Merkle roots

to V.

2.6 V queries P for values of f(x) and p(x) and checks whether they fit

the commitment and the required relationship between f and p.

3 Low-degree testing

3.3 Commitment round: P applies the FRI protocol, i.e. he reduces the

degree of the polynomial by repeatedly applying the FRI operator and

makes commitments until a constant remains which he sends to V. He

uses random inputs by the verifier and sends the commitment (i.e. the

Merkle root) in each round to V.

3.4 Querying round: V verifies that the FRI protocol was performed cor-

rectly by querying for values in L and “replicating” the protocol for

this value. The proof is successful if the commitments are correct and

the constant found by V matches the constant sent by P before.
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